Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprss2d Structured version   Visualization version   GIF version

Theorem mnuprss2d 41750
Description: Special case of mnuprssd 41749. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuprss2d.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuprss2d.2 (𝜑𝑈𝑀)
mnuprss2d.3 (𝜑𝐶𝑈)
mnuprss2d.4 𝐴𝐶
mnuprss2d.5 𝐵𝐶
Assertion
Ref Expression
mnuprss2d (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐶(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuprss2d
StepHypRef Expression
1 mnuprss2d.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuprss2d.2 . 2 (𝜑𝑈𝑀)
3 mnuprss2d.3 . 2 (𝜑𝐶𝑈)
4 mnuprss2d.4 . . 3 𝐴𝐶
54a1i 11 . 2 (𝜑𝐴𝐶)
6 mnuprss2d.5 . . 3 𝐵𝐶
76a1i 11 . 2 (𝜑𝐵𝐶)
81, 2, 3, 5, 7mnuprssd 41749 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541   = wceq 1543  wcel 2112  {cab 2716  wral 3064  wrex 3065  wss 3884  𝒫 cpw 4530  {cpr 4560   cuni 4836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-sep 5216  ax-nul 5223
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-pw 4532  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  mnuprdlem4  41755
  Copyright terms: Public domain W3C validator