| Mathbox for Rohan Ridenour |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mnuprss2d | Structured version Visualization version GIF version | ||
| Description: Special case of mnuprssd 44230. (Contributed by Rohan Ridenour, 13-Aug-2023.) |
| Ref | Expression |
|---|---|
| mnuprss2d.1 | ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} |
| mnuprss2d.2 | ⊢ (𝜑 → 𝑈 ∈ 𝑀) |
| mnuprss2d.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑈) |
| mnuprss2d.4 | ⊢ 𝐴 ⊆ 𝐶 |
| mnuprss2d.5 | ⊢ 𝐵 ⊆ 𝐶 |
| Ref | Expression |
|---|---|
| mnuprss2d | ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnuprss2d.1 | . 2 ⊢ 𝑀 = {𝑘 ∣ ∀𝑙 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑘 ∧ ∀𝑚∃𝑛 ∈ 𝑘 (𝒫 𝑙 ⊆ 𝑛 ∧ ∀𝑝 ∈ 𝑙 (∃𝑞 ∈ 𝑘 (𝑝 ∈ 𝑞 ∧ 𝑞 ∈ 𝑚) → ∃𝑟 ∈ 𝑚 (𝑝 ∈ 𝑟 ∧ ∪ 𝑟 ⊆ 𝑛))))} | |
| 2 | mnuprss2d.2 | . 2 ⊢ (𝜑 → 𝑈 ∈ 𝑀) | |
| 3 | mnuprss2d.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑈) | |
| 4 | mnuprss2d.4 | . . 3 ⊢ 𝐴 ⊆ 𝐶 | |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
| 6 | mnuprss2d.5 | . . 3 ⊢ 𝐵 ⊆ 𝐶 | |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
| 8 | 1, 2, 3, 5, 7 | mnuprssd 44230 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3046 ∃wrex 3055 ⊆ wss 3922 𝒫 cpw 4571 {cpr 4599 ∪ cuni 4879 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5259 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-pw 4573 df-sn 4598 df-pr 4600 df-uni 4880 |
| This theorem is referenced by: mnuprdlem4 44236 |
| Copyright terms: Public domain | W3C validator |