Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mnuprss2d Structured version   Visualization version   GIF version

Theorem mnuprss2d 41850
Description: Special case of mnuprssd 41849. (Contributed by Rohan Ridenour, 13-Aug-2023.)
Hypotheses
Ref Expression
mnuprss2d.1 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
mnuprss2d.2 (𝜑𝑈𝑀)
mnuprss2d.3 (𝜑𝐶𝑈)
mnuprss2d.4 𝐴𝐶
mnuprss2d.5 𝐵𝐶
Assertion
Ref Expression
mnuprss2d (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Distinct variable groups:   𝑈,𝑘,𝑚,𝑛,𝑟,𝑝,𝑙   𝑈,𝑞,𝑘,𝑚,𝑛,𝑝,𝑙
Allowed substitution hints:   𝜑(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐴(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐵(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝐶(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)   𝑀(𝑘,𝑚,𝑛,𝑟,𝑞,𝑝,𝑙)

Proof of Theorem mnuprss2d
StepHypRef Expression
1 mnuprss2d.1 . 2 𝑀 = {𝑘 ∣ ∀𝑙𝑘 (𝒫 𝑙𝑘 ∧ ∀𝑚𝑛𝑘 (𝒫 𝑙𝑛 ∧ ∀𝑝𝑙 (∃𝑞𝑘 (𝑝𝑞𝑞𝑚) → ∃𝑟𝑚 (𝑝𝑟 𝑟𝑛))))}
2 mnuprss2d.2 . 2 (𝜑𝑈𝑀)
3 mnuprss2d.3 . 2 (𝜑𝐶𝑈)
4 mnuprss2d.4 . . 3 𝐴𝐶
54a1i 11 . 2 (𝜑𝐴𝐶)
6 mnuprss2d.5 . . 3 𝐵𝐶
76a1i 11 . 2 (𝜑𝐵𝐶)
81, 2, 3, 5, 7mnuprssd 41849 1 (𝜑 → {𝐴, 𝐵} ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1540   = wceq 1542  wcel 2110  {cab 2717  wral 3066  wrex 3067  wss 3892  𝒫 cpw 4539  {cpr 4569   cuni 4845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-sn 4568  df-pr 4570  df-uni 4846
This theorem is referenced by:  mnuprdlem4  41855
  Copyright terms: Public domain W3C validator