| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3688 dfss2 3932 eqbrrdva 5833 f1oiso2 7327 frxp 8105 onfununi 8310 smoel2 8332 smoiso2 8338 3ecoptocl 8782 ssfi 9137 f1domfi 9145 rex2dom 9193 fodomfib 9280 dffi2 9374 elfiun 9381 dif1card 9963 infxpenlem 9966 cfeq0 10209 cfsuc 10210 cfflb 10212 cfslb2n 10221 cofsmo 10222 domtriomlem 10395 axdc3lem4 10406 axdc4lem 10408 ttukey2g 10469 tskxpss 10725 grudomon 10770 elnpi 10941 dedekind 11337 nn0n0n1ge2b 12511 fzind 12632 suprzcl2 12897 icoshft 13434 fzen 13502 hashgt23el 14389 hashfundm 14407 hashbclem 14417 seqcoll 14429 relexpsucl 14997 relexpsucr 14998 relexpfld 15015 shftuz 15035 mulgcd 16518 algcvga 16549 lcmneg 16573 ressbas 17206 resseqnbas 17212 ressress 17217 psss 18539 tsrlemax 18545 isnmgm 18571 gsummgmpropd 18608 issgrpd 18657 iscmnd 19724 ring1ne0 20208 unitmulclb 20290 isdrngd 20674 isdrngdOLD 20676 abvn0b 20745 issrngd 20764 rmodislmodlem 20835 rmodislmod 20836 isphld 21563 mpfaddcl 22012 mpfmulcl 22013 pf1addcl 22240 pf1mulcl 22241 fitop 22787 hausnei2 23240 ordtt1 23266 locfincmp 23413 basqtop 23598 filfi 23746 fgcl 23765 neifil 23767 filuni 23772 cnextcn 23954 prdsmet 24258 blssps 24312 blss 24313 metcnp3 24428 hlhil 25343 volsup2 25506 sincosq1sgn 26407 sincosq2sgn 26408 sincosq3sgn 26409 sincosq4sgn 26410 sinq12ge0 26417 bcmono 27188 n0cutlt 28249 iswlkg 29541 umgrwwlks2on 29887 clwlkclwwlkfo 29938 3cyclfrgrrn1 30214 grpodivf 30467 ipf 30642 shintcli 31258 spanuni 31473 adjadj 31865 unopadj2 31867 hmopadj 31868 hmopbdoptHIL 31917 resvsca 33304 resvlem 33305 submateq 33799 esumcocn 34070 bnj1379 34820 bnj571 34896 bnj594 34902 bnj580 34903 bnj600 34909 bnj1189 34999 bnj1321 35017 bnj1384 35022 f1resrcmplf1dlem 35076 cplgredgex 35108 cusgr3cyclex 35123 loop1cycl 35124 umgr2cycllem 35127 umgr2cycl 35128 acycgr2v 35137 cusgracyclt3v 35143 climuzcnv 35658 fness 36337 bj-idreseq 37150 bj-imdiridlem 37173 neificl 37747 metf1o 37749 isismty 37795 ismtybndlem 37800 ablo4pnp 37874 divrngcl 37951 keridl 38026 prnc 38061 lsmsatcv 39003 llncvrlpln2 39551 lplncvrlvol2 39609 linepsubN 39746 pmapsub 39762 dalawlem10 39874 dalawlem13 39877 dalawlem14 39878 dalaw 39880 diaf11N 41043 dibf11N 41155 ismrcd1 42686 ismrcd2 42687 mzpincl 42722 mzpadd 42726 mzpmul 42727 pellfundge 42870 imasgim 43089 sqrtcval 43630 stoweidlem2 46000 stoweidlem17 46015 imaelsetpreimafv 47396 opnneir 48895 i0oii 48908 io1ii 48909 |
| Copyright terms: Public domain | W3C validator |