![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: 3anidm12 1419 mob 3739 dfss2 3994 eqbrrdva 5894 fcoOLD 6772 f1oiso2 7388 frxp 8167 onfununi 8397 smoel2 8419 smoiso2 8425 3ecoptocl 8867 ssfi 9240 f1domfi 9247 rex2dom 9309 fodomfib 9397 dffi2 9492 elfiun 9499 dif1card 10079 infxpenlem 10082 cfeq0 10325 cfsuc 10326 cfflb 10328 cfslb2n 10337 cofsmo 10338 domtriomlem 10511 axdc3lem4 10522 axdc4lem 10524 ttukey2g 10585 tskxpss 10841 grudomon 10886 elnpi 11057 dedekind 11453 nn0n0n1ge2b 12621 fzind 12741 suprzcl2 13003 icoshft 13533 fzen 13601 hashgt23el 14473 hashfundm 14491 hashbclem 14501 seqcoll 14513 relexpsucl 15080 relexpsucr 15081 relexpfld 15098 shftuz 15118 mulgcd 16595 algcvga 16626 lcmneg 16650 ressbas 17293 ressbasOLD 17294 resseqnbas 17300 resslemOLD 17301 ressress 17307 psss 18650 tsrlemax 18656 isnmgm 18682 gsummgmpropd 18719 issgrpd 18768 iscmnd 19836 ring1ne0 20322 unitmulclb 20407 isdrngd 20787 isdrngdOLD 20789 abvn0b 20859 issrngd 20878 rmodislmodlem 20949 rmodislmod 20950 rmodislmodOLD 20951 isphld 21695 mpfaddcl 22152 mpfmulcl 22153 pf1addcl 22378 pf1mulcl 22379 fitop 22927 hausnei2 23382 ordtt1 23408 locfincmp 23555 basqtop 23740 filfi 23888 fgcl 23907 neifil 23909 filuni 23914 cnextcn 24096 prdsmet 24401 blssps 24455 blss 24456 metcnp3 24574 hlhil 25496 volsup2 25659 sincosq1sgn 26558 sincosq2sgn 26559 sincosq3sgn 26560 sincosq4sgn 26561 sinq12ge0 26568 bcmono 27339 iswlkg 29649 umgrwwlks2on 29990 clwlkclwwlkfo 30041 3cyclfrgrrn1 30317 grpodivf 30570 ipf 30745 shintcli 31361 spanuni 31576 adjadj 31968 unopadj2 31970 hmopadj 31971 hmopbdoptHIL 32020 resvsca 33321 resvlem 33322 resvlemOLD 33323 submateq 33755 esumcocn 34044 bnj1379 34806 bnj571 34882 bnj594 34888 bnj580 34889 bnj600 34895 bnj1189 34985 bnj1321 35003 bnj1384 35008 f1resrcmplf1dlem 35062 cplgredgex 35088 cusgr3cyclex 35104 loop1cycl 35105 umgr2cycllem 35108 umgr2cycl 35109 acycgr2v 35118 cusgracyclt3v 35124 climuzcnv 35639 fness 36315 bj-idreseq 37128 bj-imdiridlem 37151 neificl 37713 metf1o 37715 isismty 37761 ismtybndlem 37766 ablo4pnp 37840 divrngcl 37917 keridl 37992 prnc 38027 lsmsatcv 38966 llncvrlpln2 39514 lplncvrlvol2 39572 linepsubN 39709 pmapsub 39725 dalawlem10 39837 dalawlem13 39840 dalawlem14 39841 dalaw 39843 diaf11N 41006 dibf11N 41118 ismrcd1 42654 ismrcd2 42655 mzpincl 42690 mzpadd 42694 mzpmul 42695 pellfundge 42838 imasgim 43057 sqrtcval 43603 stoweidlem2 45923 stoweidlem17 45938 imaelsetpreimafv 47269 opnneir 48586 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |