Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: 3anidm12 1419 mob 3667 eqbrrdva 5816 fcoOLD 6681 f1oiso2 7284 frxp 8039 onfununi 8247 smoel2 8269 smoiso2 8275 3ecoptocl 8674 ssfi 9043 f1domfi 9054 rex2dom 9116 dffi2 9285 elfiun 9292 dif1card 9872 infxpenlem 9875 cfeq0 10118 cfsuc 10119 cfflb 10121 cfslb2n 10130 cofsmo 10131 domtriomlem 10304 axdc3lem4 10315 axdc4lem 10317 ttukey2g 10378 tskxpss 10634 grudomon 10679 elnpi 10850 dedekind 11244 nn0n0n1ge2b 12407 fzind 12524 suprzcl2 12784 icoshft 13311 fzen 13379 hashgt23el 14244 hashbclem 14269 seqcoll 14283 relexpsucl 14842 relexpsucr 14843 relexpfld 14860 shftuz 14880 mulgcd 16356 algcvga 16382 lcmneg 16406 ressbas 17045 ressbasOLD 17046 resseqnbas 17049 resslemOLD 17050 ressress 17056 psss 18396 tsrlemax 18402 isnmgm 18428 gsummgmpropd 18463 iscmnd 19495 ring1ne0 19925 unitmulclb 20002 isdrngd 20121 issrngd 20227 rmodislmodlem 20296 rmodislmod 20297 rmodislmodOLD 20298 abvn0b 20679 isphld 20965 mpfaddcl 21421 mpfmulcl 21422 pf1addcl 21625 pf1mulcl 21626 fitop 22155 hausnei2 22610 ordtt1 22636 locfincmp 22783 basqtop 22968 filfi 23116 fgcl 23135 neifil 23137 filuni 23142 cnextcn 23324 prdsmet 23629 blssps 23683 blss 23684 metcnp3 23802 hlhil 24713 volsup2 24875 sincosq1sgn 25761 sincosq2sgn 25762 sincosq3sgn 25763 sincosq4sgn 25764 sinq12ge0 25771 bcmono 26531 iswlkg 28269 umgrwwlks2on 28610 clwlkclwwlkfo 28661 3cyclfrgrrn1 28937 grpodivf 29188 ipf 29363 shintcli 29979 spanuni 30194 adjadj 30586 unopadj2 30588 hmopadj 30589 hmopbdoptHIL 30638 resvsca 31823 resvlem 31824 resvlemOLD 31825 submateq 32055 esumcocn 32344 bnj1379 33107 bnj571 33183 bnj594 33189 bnj580 33190 bnj600 33196 bnj1189 33286 bnj1321 33304 bnj1384 33309 f1resrcmplf1dlem 33355 hashfundm 33371 cplgredgex 33379 cusgr3cyclex 33395 loop1cycl 33396 umgr2cycllem 33399 umgr2cycl 33400 acycgr2v 33409 cusgracyclt3v 33415 climuzcnv 33926 fness 34675 bj-idreseq 35487 bj-imdiridlem 35510 neificl 36065 metf1o 36067 isismty 36113 ismtybndlem 36118 ablo4pnp 36192 divrngcl 36269 keridl 36344 prnc 36379 lsmsatcv 37326 llncvrlpln2 37874 lplncvrlvol2 37932 linepsubN 38069 pmapsub 38085 dalawlem10 38197 dalawlem13 38200 dalawlem14 38201 dalaw 38203 diaf11N 39366 dibf11N 39478 ismrcd1 40831 ismrcd2 40832 mzpincl 40867 mzpadd 40871 mzpmul 40872 pellfundge 41015 imasgim 41237 sqrtcval 41620 stoweidlem2 43929 stoweidlem17 43944 imaelsetpreimafv 45263 opnneir 46616 i0oii 46629 io1ii 46630 |
Copyright terms: Public domain | W3C validator |