| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3672 dfss2 3916 eqbrrdva 5813 f1oiso2 7292 frxp 8062 onfununi 8267 smoel2 8289 smoiso2 8295 3ecoptocl 8739 ssfi 9089 f1domfi 9097 rex2dom 9144 fodomfib 9220 dffi2 9314 elfiun 9321 dif1card 9908 infxpenlem 9911 cfeq0 10154 cfsuc 10155 cfflb 10157 cfslb2n 10166 cofsmo 10167 domtriomlem 10340 axdc3lem4 10351 axdc4lem 10353 ttukey2g 10414 tskxpss 10670 grudomon 10715 elnpi 10886 dedekind 11283 nn0n0n1ge2b 12457 fzind 12577 suprzcl2 12838 icoshft 13375 fzen 13443 hashgt23el 14333 hashfundm 14351 hashbclem 14361 seqcoll 14373 relexpsucl 14940 relexpsucr 14941 relexpfld 14958 shftuz 14978 mulgcd 16461 algcvga 16492 lcmneg 16516 ressbas 17149 resseqnbas 17155 ressress 17160 psss 18488 tsrlemax 18494 isnmgm 18554 gsummgmpropd 18591 issgrpd 18640 iscmnd 19708 ring1ne0 20219 unitmulclb 20301 isdrngd 20682 isdrngdOLD 20684 abvn0b 20753 issrngd 20772 rmodislmodlem 20864 rmodislmod 20865 isphld 21593 mpfaddcl 22041 mpfmulcl 22042 pf1addcl 22269 pf1mulcl 22270 fitop 22816 hausnei2 23269 ordtt1 23295 locfincmp 23442 basqtop 23627 filfi 23775 fgcl 23794 neifil 23796 filuni 23801 cnextcn 23983 prdsmet 24286 blssps 24340 blss 24341 metcnp3 24456 hlhil 25371 volsup2 25534 sincosq1sgn 26435 sincosq2sgn 26436 sincosq3sgn 26437 sincosq4sgn 26438 sinq12ge0 26445 bcmono 27216 n0cutlt 28286 iswlkg 29594 usgrwwlks2on 29938 umgrwwlks2on 29939 clwlkclwwlkfo 29991 3cyclfrgrrn1 30267 grpodivf 30520 ipf 30695 shintcli 31311 spanuni 31526 adjadj 31918 unopadj2 31920 hmopadj 31921 hmopbdoptHIL 31970 resvsca 33304 resvlem 33305 submateq 33843 esumcocn 34114 bnj1379 34863 bnj571 34939 bnj594 34945 bnj580 34946 bnj600 34952 bnj1189 35042 bnj1321 35060 bnj1384 35065 f1resrcmplf1dlem 35119 trssfir1om 35143 trssfir1omregs 35153 cplgredgex 35186 cusgr3cyclex 35201 loop1cycl 35202 umgr2cycllem 35205 umgr2cycl 35206 acycgr2v 35215 cusgracyclt3v 35221 climuzcnv 35736 fness 36414 bj-idreseq 37227 bj-imdiridlem 37250 neificl 37813 metf1o 37815 isismty 37861 ismtybndlem 37866 ablo4pnp 37940 divrngcl 38017 keridl 38092 prnc 38127 lsmsatcv 39129 llncvrlpln2 39676 lplncvrlvol2 39734 linepsubN 39871 pmapsub 39887 dalawlem10 39999 dalawlem13 40002 dalawlem14 40003 dalaw 40005 diaf11N 41168 dibf11N 41280 ismrcd1 42815 ismrcd2 42816 mzpincl 42851 mzpadd 42855 mzpmul 42856 pellfundge 42999 imasgim 43217 sqrtcval 43758 stoweidlem2 46124 stoweidlem17 46139 imaelsetpreimafv 47519 opnneir 49031 i0oii 49044 io1ii 49045 |
| Copyright terms: Public domain | W3C validator |