![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1118 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: 3anidm12 1418 mob 3725 dfss2 3980 eqbrrdva 5882 f1oiso2 7371 frxp 8149 onfununi 8379 smoel2 8401 smoiso2 8407 3ecoptocl 8847 ssfi 9211 f1domfi 9218 rex2dom 9279 fodomfib 9366 dffi2 9460 elfiun 9467 dif1card 10047 infxpenlem 10050 cfeq0 10293 cfsuc 10294 cfflb 10296 cfslb2n 10305 cofsmo 10306 domtriomlem 10479 axdc3lem4 10490 axdc4lem 10492 ttukey2g 10553 tskxpss 10809 grudomon 10854 elnpi 11025 dedekind 11421 nn0n0n1ge2b 12592 fzind 12713 suprzcl2 12977 icoshft 13509 fzen 13577 hashgt23el 14459 hashfundm 14477 hashbclem 14487 seqcoll 14499 relexpsucl 15066 relexpsucr 15067 relexpfld 15084 shftuz 15104 mulgcd 16581 algcvga 16612 lcmneg 16636 ressbas 17279 ressbasOLD 17280 resseqnbas 17286 resslemOLD 17287 ressress 17293 psss 18637 tsrlemax 18643 isnmgm 18669 gsummgmpropd 18706 issgrpd 18755 iscmnd 19826 ring1ne0 20312 unitmulclb 20397 isdrngd 20781 isdrngdOLD 20783 abvn0b 20853 issrngd 20872 rmodislmodlem 20943 rmodislmod 20944 rmodislmodOLD 20945 isphld 21689 mpfaddcl 22146 mpfmulcl 22147 pf1addcl 22372 pf1mulcl 22373 fitop 22921 hausnei2 23376 ordtt1 23402 locfincmp 23549 basqtop 23734 filfi 23882 fgcl 23901 neifil 23903 filuni 23908 cnextcn 24090 prdsmet 24395 blssps 24449 blss 24450 metcnp3 24568 hlhil 25490 volsup2 25653 sincosq1sgn 26554 sincosq2sgn 26555 sincosq3sgn 26556 sincosq4sgn 26557 sinq12ge0 26564 bcmono 27335 iswlkg 29645 umgrwwlks2on 29986 clwlkclwwlkfo 30037 3cyclfrgrrn1 30313 grpodivf 30566 ipf 30741 shintcli 31357 spanuni 31572 adjadj 31964 unopadj2 31966 hmopadj 31967 hmopbdoptHIL 32016 resvsca 33335 resvlem 33336 resvlemOLD 33337 submateq 33769 esumcocn 34060 bnj1379 34822 bnj571 34898 bnj594 34904 bnj580 34905 bnj600 34911 bnj1189 35001 bnj1321 35019 bnj1384 35024 f1resrcmplf1dlem 35078 cplgredgex 35104 cusgr3cyclex 35120 loop1cycl 35121 umgr2cycllem 35124 umgr2cycl 35125 acycgr2v 35134 cusgracyclt3v 35140 climuzcnv 35655 fness 36331 bj-idreseq 37144 bj-imdiridlem 37167 neificl 37739 metf1o 37741 isismty 37787 ismtybndlem 37792 ablo4pnp 37866 divrngcl 37943 keridl 38018 prnc 38053 lsmsatcv 38991 llncvrlpln2 39539 lplncvrlvol2 39597 linepsubN 39734 pmapsub 39750 dalawlem10 39862 dalawlem13 39865 dalawlem14 39866 dalaw 39868 diaf11N 41031 dibf11N 41143 ismrcd1 42685 ismrcd2 42686 mzpincl 42721 mzpadd 42725 mzpmul 42726 pellfundge 42869 imasgim 43088 sqrtcval 43630 stoweidlem2 45957 stoweidlem17 45972 imaelsetpreimafv 47319 opnneir 48702 i0oii 48715 io1ii 48716 |
Copyright terms: Public domain | W3C validator |