![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1120 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anidm12 1420 mob 3714 eqbrrdva 5870 fcoOLD 6743 f1oiso2 7349 frxp 8112 onfununi 8341 smoel2 8363 smoiso2 8369 3ecoptocl 8803 ssfi 9173 f1domfi 9184 rex2dom 9246 dffi2 9418 elfiun 9425 dif1card 10005 infxpenlem 10008 cfeq0 10251 cfsuc 10252 cfflb 10254 cfslb2n 10263 cofsmo 10264 domtriomlem 10437 axdc3lem4 10448 axdc4lem 10450 ttukey2g 10511 tskxpss 10767 grudomon 10812 elnpi 10983 dedekind 11377 nn0n0n1ge2b 12540 fzind 12660 suprzcl2 12922 icoshft 13450 fzen 13518 hashgt23el 14384 hashfundm 14402 hashbclem 14411 seqcoll 14425 relexpsucl 14978 relexpsucr 14979 relexpfld 14996 shftuz 15016 mulgcd 16490 algcvga 16516 lcmneg 16540 ressbas 17179 ressbasOLD 17180 resseqnbas 17186 resslemOLD 17187 ressress 17193 psss 18533 tsrlemax 18539 isnmgm 18565 gsummgmpropd 18600 issgrpd 18621 iscmnd 19662 ring1ne0 20111 unitmulclb 20195 isdrngd 20390 isdrngdOLD 20392 issrngd 20469 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 abvn0b 20920 isphld 21207 mpfaddcl 21668 mpfmulcl 21669 pf1addcl 21872 pf1mulcl 21873 fitop 22402 hausnei2 22857 ordtt1 22883 locfincmp 23030 basqtop 23215 filfi 23363 fgcl 23382 neifil 23384 filuni 23389 cnextcn 23571 prdsmet 23876 blssps 23930 blss 23931 metcnp3 24049 hlhil 24960 volsup2 25122 sincosq1sgn 26008 sincosq2sgn 26009 sincosq3sgn 26010 sincosq4sgn 26011 sinq12ge0 26018 bcmono 26780 iswlkg 28870 umgrwwlks2on 29211 clwlkclwwlkfo 29262 3cyclfrgrrn1 29538 grpodivf 29791 ipf 29966 shintcli 30582 spanuni 30797 adjadj 31189 unopadj2 31191 hmopadj 31192 hmopbdoptHIL 31241 resvsca 32444 resvlem 32445 resvlemOLD 32446 submateq 32789 esumcocn 33078 bnj1379 33841 bnj571 33917 bnj594 33923 bnj580 33924 bnj600 33930 bnj1189 34020 bnj1321 34038 bnj1384 34043 f1resrcmplf1dlem 34089 cplgredgex 34111 cusgr3cyclex 34127 loop1cycl 34128 umgr2cycllem 34131 umgr2cycl 34132 acycgr2v 34141 cusgracyclt3v 34147 climuzcnv 34656 mpomulcn 35162 fness 35234 bj-idreseq 36043 bj-imdiridlem 36066 neificl 36621 metf1o 36623 isismty 36669 ismtybndlem 36674 ablo4pnp 36748 divrngcl 36825 keridl 36900 prnc 36935 lsmsatcv 37880 llncvrlpln2 38428 lplncvrlvol2 38486 linepsubN 38623 pmapsub 38639 dalawlem10 38751 dalawlem13 38754 dalawlem14 38755 dalaw 38757 diaf11N 39920 dibf11N 40032 ismrcd1 41436 ismrcd2 41437 mzpincl 41472 mzpadd 41476 mzpmul 41477 pellfundge 41620 imasgim 41842 sqrtcval 42392 stoweidlem2 44718 stoweidlem17 44733 imaelsetpreimafv 46063 opnneir 47539 i0oii 47552 io1ii 47553 |
Copyright terms: Public domain | W3C validator |