Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 |
This theorem is referenced by: 3anidm12 1419 mob 3657 eqbrrdva 5791 fcoOLD 6655 f1oiso2 7255 frxp 7998 onfununi 8203 smoel2 8225 smoiso2 8231 3ecoptocl 8629 ssfi 8994 f1domfi 9005 rex2dom 9067 dffi2 9226 elfiun 9233 dif1card 9812 infxpenlem 9815 cfeq0 10058 cfsuc 10059 cfflb 10061 cfslb2n 10070 cofsmo 10071 domtriomlem 10244 axdc3lem4 10255 axdc4lem 10257 ttukey2g 10318 tskxpss 10574 grudomon 10619 elnpi 10790 dedekind 11184 nn0n0n1ge2b 12347 fzind 12464 suprzcl2 12724 icoshft 13251 fzen 13319 hashgt23el 14184 hashbclem 14209 seqcoll 14223 relexpsucl 14787 relexpsucr 14788 relexpfld 14805 shftuz 14825 mulgcd 16301 algcvga 16329 lcmneg 16353 ressbas 16992 ressbasOLD 16993 resseqnbas 16996 resslemOLD 16997 ressress 17003 psss 18343 tsrlemax 18349 isnmgm 18375 gsummgmpropd 18410 iscmnd 19444 ring1ne0 19875 unitmulclb 19952 isdrngd 20061 issrngd 20166 rmodislmodlem 20235 rmodislmod 20236 rmodislmodOLD 20237 abvn0b 20618 isphld 20904 mpfaddcl 21360 mpfmulcl 21361 pf1addcl 21564 pf1mulcl 21565 fitop 22094 hausnei2 22549 ordtt1 22575 locfincmp 22722 basqtop 22907 filfi 23055 fgcl 23074 neifil 23076 filuni 23081 cnextcn 23263 prdsmet 23568 blssps 23622 blss 23623 metcnp3 23741 hlhil 24652 volsup2 24814 sincosq1sgn 25700 sincosq2sgn 25701 sincosq3sgn 25702 sincosq4sgn 25703 sinq12ge0 25710 bcmono 26470 iswlkg 28025 umgrwwlks2on 28367 clwlkclwwlkfo 28418 3cyclfrgrrn1 28694 grpodivf 28945 ipf 29120 shintcli 29736 spanuni 29951 adjadj 30343 unopadj2 30345 hmopadj 30346 hmopbdoptHIL 30395 resvsca 31574 resvlem 31575 resvlemOLD 31576 submateq 31804 esumcocn 32093 bnj1379 32855 bnj571 32931 bnj594 32937 bnj580 32938 bnj600 32944 bnj1189 33034 bnj1321 33052 bnj1384 33057 f1resrcmplf1dlem 33103 hashfundm 33119 cplgredgex 33127 cusgr3cyclex 33143 loop1cycl 33144 umgr2cycllem 33147 umgr2cycl 33148 acycgr2v 33157 cusgracyclt3v 33163 climuzcnv 33674 fness 34583 bj-idreseq 35377 bj-imdiridlem 35400 neificl 35955 metf1o 35957 isismty 36003 ismtybndlem 36008 ablo4pnp 36082 divrngcl 36159 keridl 36234 prnc 36269 lsmsatcv 37066 llncvrlpln2 37613 lplncvrlvol2 37671 linepsubN 37808 pmapsub 37824 dalawlem10 37936 dalawlem13 37939 dalawlem14 37940 dalaw 37942 diaf11N 39105 dibf11N 39217 ismrcd1 40557 ismrcd2 40558 mzpincl 40593 mzpadd 40597 mzpmul 40598 pellfundge 40741 imasgim 40963 sqrtcval 41287 stoweidlem2 43592 stoweidlem17 43607 imaelsetpreimafv 44905 opnneir 46258 i0oii 46271 io1ii 46272 |
Copyright terms: Public domain | W3C validator |