![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1120 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 |
This theorem is referenced by: 3anidm12 1420 mob 3714 eqbrrdva 5870 fcoOLD 6743 f1oiso2 7349 frxp 8112 onfununi 8341 smoel2 8363 smoiso2 8369 3ecoptocl 8803 ssfi 9173 f1domfi 9184 rex2dom 9246 dffi2 9418 elfiun 9425 dif1card 10005 infxpenlem 10008 cfeq0 10251 cfsuc 10252 cfflb 10254 cfslb2n 10263 cofsmo 10264 domtriomlem 10437 axdc3lem4 10448 axdc4lem 10450 ttukey2g 10511 tskxpss 10767 grudomon 10812 elnpi 10983 dedekind 11377 nn0n0n1ge2b 12540 fzind 12660 suprzcl2 12922 icoshft 13450 fzen 13518 hashgt23el 14384 hashfundm 14402 hashbclem 14411 seqcoll 14425 relexpsucl 14978 relexpsucr 14979 relexpfld 14996 shftuz 15016 mulgcd 16490 algcvga 16516 lcmneg 16540 ressbas 17179 ressbasOLD 17180 resseqnbas 17186 resslemOLD 17187 ressress 17193 psss 18533 tsrlemax 18539 isnmgm 18565 gsummgmpropd 18600 issgrpd 18621 iscmnd 19662 ring1ne0 20111 unitmulclb 20195 isdrngd 20390 isdrngdOLD 20392 issrngd 20469 rmodislmodlem 20539 rmodislmod 20540 rmodislmodOLD 20541 abvn0b 20920 isphld 21207 mpfaddcl 21668 mpfmulcl 21669 pf1addcl 21872 pf1mulcl 21873 fitop 22402 hausnei2 22857 ordtt1 22883 locfincmp 23030 basqtop 23215 filfi 23363 fgcl 23382 neifil 23384 filuni 23389 cnextcn 23571 prdsmet 23876 blssps 23930 blss 23931 metcnp3 24049 hlhil 24960 volsup2 25122 sincosq1sgn 26008 sincosq2sgn 26009 sincosq3sgn 26010 sincosq4sgn 26011 sinq12ge0 26018 bcmono 26780 iswlkg 28901 umgrwwlks2on 29242 clwlkclwwlkfo 29293 3cyclfrgrrn1 29569 grpodivf 29822 ipf 29997 shintcli 30613 spanuni 30828 adjadj 31220 unopadj2 31222 hmopadj 31223 hmopbdoptHIL 31272 resvsca 32475 resvlem 32476 resvlemOLD 32477 submateq 32820 esumcocn 33109 bnj1379 33872 bnj571 33948 bnj594 33954 bnj580 33955 bnj600 33961 bnj1189 34051 bnj1321 34069 bnj1384 34074 f1resrcmplf1dlem 34120 cplgredgex 34142 cusgr3cyclex 34158 loop1cycl 34159 umgr2cycllem 34162 umgr2cycl 34163 acycgr2v 34172 cusgracyclt3v 34178 climuzcnv 34687 fness 35282 bj-idreseq 36091 bj-imdiridlem 36114 neificl 36669 metf1o 36671 isismty 36717 ismtybndlem 36722 ablo4pnp 36796 divrngcl 36873 keridl 36948 prnc 36983 lsmsatcv 37928 llncvrlpln2 38476 lplncvrlvol2 38534 linepsubN 38671 pmapsub 38687 dalawlem10 38799 dalawlem13 38802 dalawlem14 38803 dalaw 38805 diaf11N 39968 dibf11N 40080 ismrcd1 41484 ismrcd2 41485 mzpincl 41520 mzpadd 41524 mzpmul 41525 pellfundge 41668 imasgim 41890 sqrtcval 42440 stoweidlem2 44766 stoweidlem17 44781 imaelsetpreimafv 46111 opnneir 47587 i0oii 47600 io1ii 47601 |
Copyright terms: Public domain | W3C validator |