| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3679 dfss2 3923 eqbrrdva 5816 f1oiso2 7293 frxp 8066 onfununi 8271 smoel2 8293 smoiso2 8299 3ecoptocl 8743 ssfi 9097 f1domfi 9105 rex2dom 9152 fodomfib 9238 dffi2 9332 elfiun 9339 dif1card 9923 infxpenlem 9926 cfeq0 10169 cfsuc 10170 cfflb 10172 cfslb2n 10181 cofsmo 10182 domtriomlem 10355 axdc3lem4 10366 axdc4lem 10368 ttukey2g 10429 tskxpss 10685 grudomon 10730 elnpi 10901 dedekind 11297 nn0n0n1ge2b 12471 fzind 12592 suprzcl2 12857 icoshft 13394 fzen 13462 hashgt23el 14349 hashfundm 14367 hashbclem 14377 seqcoll 14389 relexpsucl 14956 relexpsucr 14957 relexpfld 14974 shftuz 14994 mulgcd 16477 algcvga 16508 lcmneg 16532 ressbas 17165 resseqnbas 17171 ressress 17176 psss 18504 tsrlemax 18510 isnmgm 18536 gsummgmpropd 18573 issgrpd 18622 iscmnd 19691 ring1ne0 20202 unitmulclb 20284 isdrngd 20668 isdrngdOLD 20670 abvn0b 20739 issrngd 20758 rmodislmodlem 20850 rmodislmod 20851 isphld 21579 mpfaddcl 22028 mpfmulcl 22029 pf1addcl 22256 pf1mulcl 22257 fitop 22803 hausnei2 23256 ordtt1 23282 locfincmp 23429 basqtop 23614 filfi 23762 fgcl 23781 neifil 23783 filuni 23788 cnextcn 23970 prdsmet 24274 blssps 24328 blss 24329 metcnp3 24444 hlhil 25359 volsup2 25522 sincosq1sgn 26423 sincosq2sgn 26424 sincosq3sgn 26425 sincosq4sgn 26426 sinq12ge0 26433 bcmono 27204 n0cutlt 28272 iswlkg 29577 umgrwwlks2on 29920 clwlkclwwlkfo 29971 3cyclfrgrrn1 30247 grpodivf 30500 ipf 30675 shintcli 31291 spanuni 31506 adjadj 31898 unopadj2 31900 hmopadj 31901 hmopbdoptHIL 31950 resvsca 33280 resvlem 33281 submateq 33775 esumcocn 34046 bnj1379 34796 bnj571 34872 bnj594 34878 bnj580 34879 bnj600 34885 bnj1189 34975 bnj1321 34993 bnj1384 34998 f1resrcmplf1dlem 35052 cplgredgex 35093 cusgr3cyclex 35108 loop1cycl 35109 umgr2cycllem 35112 umgr2cycl 35113 acycgr2v 35122 cusgracyclt3v 35128 climuzcnv 35643 fness 36322 bj-idreseq 37135 bj-imdiridlem 37158 neificl 37732 metf1o 37734 isismty 37780 ismtybndlem 37785 ablo4pnp 37859 divrngcl 37936 keridl 38011 prnc 38046 lsmsatcv 38988 llncvrlpln2 39536 lplncvrlvol2 39594 linepsubN 39731 pmapsub 39747 dalawlem10 39859 dalawlem13 39862 dalawlem14 39863 dalaw 39865 diaf11N 41028 dibf11N 41140 ismrcd1 42671 ismrcd2 42672 mzpincl 42707 mzpadd 42711 mzpmul 42712 pellfundge 42855 imasgim 43073 sqrtcval 43614 stoweidlem2 45984 stoweidlem17 45999 imaelsetpreimafv 47380 opnneir 48892 i0oii 48905 io1ii 48906 |
| Copyright terms: Public domain | W3C validator |