| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3691 dfss2 3935 eqbrrdva 5836 f1oiso2 7330 frxp 8108 onfununi 8313 smoel2 8335 smoiso2 8341 3ecoptocl 8785 ssfi 9143 f1domfi 9151 rex2dom 9200 fodomfib 9287 dffi2 9381 elfiun 9388 dif1card 9970 infxpenlem 9973 cfeq0 10216 cfsuc 10217 cfflb 10219 cfslb2n 10228 cofsmo 10229 domtriomlem 10402 axdc3lem4 10413 axdc4lem 10415 ttukey2g 10476 tskxpss 10732 grudomon 10777 elnpi 10948 dedekind 11344 nn0n0n1ge2b 12518 fzind 12639 suprzcl2 12904 icoshft 13441 fzen 13509 hashgt23el 14396 hashfundm 14414 hashbclem 14424 seqcoll 14436 relexpsucl 15004 relexpsucr 15005 relexpfld 15022 shftuz 15042 mulgcd 16525 algcvga 16556 lcmneg 16580 ressbas 17213 resseqnbas 17219 ressress 17224 psss 18546 tsrlemax 18552 isnmgm 18578 gsummgmpropd 18615 issgrpd 18664 iscmnd 19731 ring1ne0 20215 unitmulclb 20297 isdrngd 20681 isdrngdOLD 20683 abvn0b 20752 issrngd 20771 rmodislmodlem 20842 rmodislmod 20843 isphld 21570 mpfaddcl 22019 mpfmulcl 22020 pf1addcl 22247 pf1mulcl 22248 fitop 22794 hausnei2 23247 ordtt1 23273 locfincmp 23420 basqtop 23605 filfi 23753 fgcl 23772 neifil 23774 filuni 23779 cnextcn 23961 prdsmet 24265 blssps 24319 blss 24320 metcnp3 24435 hlhil 25350 volsup2 25513 sincosq1sgn 26414 sincosq2sgn 26415 sincosq3sgn 26416 sincosq4sgn 26417 sinq12ge0 26424 bcmono 27195 n0cutlt 28256 iswlkg 29548 umgrwwlks2on 29894 clwlkclwwlkfo 29945 3cyclfrgrrn1 30221 grpodivf 30474 ipf 30649 shintcli 31265 spanuni 31480 adjadj 31872 unopadj2 31874 hmopadj 31875 hmopbdoptHIL 31924 resvsca 33311 resvlem 33312 submateq 33806 esumcocn 34077 bnj1379 34827 bnj571 34903 bnj594 34909 bnj580 34910 bnj600 34916 bnj1189 35006 bnj1321 35024 bnj1384 35029 f1resrcmplf1dlem 35083 cplgredgex 35115 cusgr3cyclex 35130 loop1cycl 35131 umgr2cycllem 35134 umgr2cycl 35135 acycgr2v 35144 cusgracyclt3v 35150 climuzcnv 35665 fness 36344 bj-idreseq 37157 bj-imdiridlem 37180 neificl 37754 metf1o 37756 isismty 37802 ismtybndlem 37807 ablo4pnp 37881 divrngcl 37958 keridl 38033 prnc 38068 lsmsatcv 39010 llncvrlpln2 39558 lplncvrlvol2 39616 linepsubN 39753 pmapsub 39769 dalawlem10 39881 dalawlem13 39884 dalawlem14 39885 dalaw 39887 diaf11N 41050 dibf11N 41162 ismrcd1 42693 ismrcd2 42694 mzpincl 42729 mzpadd 42733 mzpmul 42734 pellfundge 42877 imasgim 43096 sqrtcval 43637 stoweidlem2 46007 stoweidlem17 46022 imaelsetpreimafv 47400 opnneir 48899 i0oii 48912 io1ii 48913 |
| Copyright terms: Public domain | W3C validator |