![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1099 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 402 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: 3anidm12 1399 mob 3618 eqbrrdva 5583 fco 6355 f1oiso2 6922 frxp 7618 onfununi 7775 smoel2 7797 smoiso2 7803 3ecoptocl 8181 dffi2 8674 elfiun 8681 dif1card 9222 infxpenlem 9225 cfeq0 9468 cfsuc 9469 cfflb 9471 cfslb2n 9480 cofsmo 9481 domtriomlem 9654 axdc3lem4 9665 axdc4lem 9667 ttukey2g 9728 tskxpss 9984 grudomon 10029 elnpi 10200 dedekind 10595 nn0n0n1ge2b 11768 fzind 11886 suprzcl2 12145 icoshft 12668 fzen 12733 hashbclem 13613 seqcoll 13625 relexpsucr 14239 relexpsucl 14243 relexpfld 14259 shftuz 14279 mulgcd 15742 algcvga 15769 lcmneg 15793 ressbas 16400 resslem 16403 ressress 16408 psss 17672 tsrlemax 17678 isnmgm 17704 gsummgmpropd 17733 iscmnd 18668 ring1ne0 19054 unitmulclb 19128 isdrngd 19240 issrngd 19344 rmodislmodlem 19413 rmodislmod 19414 abvn0b 19786 mpfaddcl 20017 mpfmulcl 20018 pf1addcl 20208 pf1mulcl 20209 isphld 20490 fitop 21202 hausnei2 21655 ordtt1 21681 locfincmp 21828 basqtop 22013 filfi 22161 fgcl 22180 neifil 22182 filuni 22187 cnextcn 22369 prdsmet 22673 blssps 22727 blss 22728 metcnp3 22843 hlhil 23739 volsup2 23899 sincosq1sgn 24777 sincosq2sgn 24778 sincosq3sgn 24779 sincosq4sgn 24780 sinq12ge0 24787 bcmono 25545 iswlkg 27088 umgrwwlks2on 27453 clwlkclwwlkfoOLD 27509 clwlkclwwlkfo 27513 3cyclfrgrrn1 27809 grpodivf 28082 ipf 28257 shintcli 28877 spanuni 29092 adjadj 29484 unopadj2 29486 hmopadj 29487 hmopbdoptHIL 29536 resvsca 30538 resvlem 30539 submateq 30673 esumcocn 30940 bnj1379 31711 bnj571 31786 bnj594 31792 bnj580 31793 bnj600 31799 bnj1189 31887 bnj1321 31905 bnj1384 31910 climuzcnv 32374 fness 33158 neificl 34418 metf1o 34420 isismty 34469 ismtybndlem 34474 ablo4pnp 34548 divrngcl 34625 keridl 34700 prnc 34735 lsmsatcv 35539 llncvrlpln2 36086 lplncvrlvol2 36144 linepsubN 36281 pmapsub 36297 dalawlem10 36409 dalawlem13 36412 dalawlem14 36413 dalaw 36415 diaf11N 37578 dibf11N 37690 ismrcd1 38635 ismrcd2 38636 mzpincl 38671 mzpadd 38675 mzpmul 38676 pellfundge 38820 imasgim 39041 stoweidlem2 41664 stoweidlem17 41679 |
Copyright terms: Public domain | W3C validator |