| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3676 dfss2 3920 eqbrrdva 5809 f1oiso2 7286 frxp 8056 onfununi 8261 smoel2 8283 smoiso2 8289 3ecoptocl 8733 ssfi 9082 f1domfi 9090 rex2dom 9137 fodomfib 9213 dffi2 9307 elfiun 9314 dif1card 9898 infxpenlem 9901 cfeq0 10144 cfsuc 10145 cfflb 10147 cfslb2n 10156 cofsmo 10157 domtriomlem 10330 axdc3lem4 10341 axdc4lem 10343 ttukey2g 10404 tskxpss 10660 grudomon 10705 elnpi 10876 dedekind 11273 nn0n0n1ge2b 12447 fzind 12568 suprzcl2 12833 icoshft 13370 fzen 13438 hashgt23el 14328 hashfundm 14346 hashbclem 14356 seqcoll 14368 relexpsucl 14935 relexpsucr 14936 relexpfld 14953 shftuz 14973 mulgcd 16456 algcvga 16487 lcmneg 16511 ressbas 17144 resseqnbas 17150 ressress 17155 psss 18483 tsrlemax 18489 isnmgm 18549 gsummgmpropd 18586 issgrpd 18635 iscmnd 19704 ring1ne0 20215 unitmulclb 20297 isdrngd 20678 isdrngdOLD 20680 abvn0b 20749 issrngd 20768 rmodislmodlem 20860 rmodislmod 20861 isphld 21589 mpfaddcl 22038 mpfmulcl 22039 pf1addcl 22266 pf1mulcl 22267 fitop 22813 hausnei2 23266 ordtt1 23292 locfincmp 23439 basqtop 23624 filfi 23772 fgcl 23791 neifil 23793 filuni 23798 cnextcn 23980 prdsmet 24283 blssps 24337 blss 24338 metcnp3 24453 hlhil 25368 volsup2 25531 sincosq1sgn 26432 sincosq2sgn 26433 sincosq3sgn 26434 sincosq4sgn 26435 sinq12ge0 26442 bcmono 27213 n0cutlt 28283 iswlkg 29590 umgrwwlks2on 29933 clwlkclwwlkfo 29984 3cyclfrgrrn1 30260 grpodivf 30513 ipf 30688 shintcli 31304 spanuni 31519 adjadj 31911 unopadj2 31913 hmopadj 31914 hmopbdoptHIL 31963 resvsca 33292 resvlem 33293 submateq 33817 esumcocn 34088 bnj1379 34837 bnj571 34913 bnj594 34919 bnj580 34920 bnj600 34926 bnj1189 35016 bnj1321 35034 bnj1384 35039 f1resrcmplf1dlem 35093 trssfir1omregs 35120 cplgredgex 35153 cusgr3cyclex 35168 loop1cycl 35169 umgr2cycllem 35172 umgr2cycl 35173 acycgr2v 35182 cusgracyclt3v 35188 climuzcnv 35703 fness 36382 bj-idreseq 37195 bj-imdiridlem 37218 neificl 37792 metf1o 37794 isismty 37840 ismtybndlem 37845 ablo4pnp 37919 divrngcl 37996 keridl 38071 prnc 38106 lsmsatcv 39048 llncvrlpln2 39595 lplncvrlvol2 39653 linepsubN 39790 pmapsub 39806 dalawlem10 39918 dalawlem13 39921 dalawlem14 39922 dalaw 39924 diaf11N 41087 dibf11N 41199 ismrcd1 42730 ismrcd2 42731 mzpincl 42766 mzpadd 42770 mzpmul 42771 pellfundge 42914 imasgim 43132 sqrtcval 43673 stoweidlem2 46039 stoweidlem17 46054 imaelsetpreimafv 47425 opnneir 48937 i0oii 48950 io1ii 48951 |
| Copyright terms: Public domain | W3C validator |