Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version |
Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1117 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: 3anidm12 1417 mob 3655 eqbrrdva 5775 fcoOLD 6621 f1oiso2 7216 frxp 7951 onfununi 8156 smoel2 8178 smoiso2 8184 3ecoptocl 8572 ssfi 8921 f1domfi 8932 dffi2 9143 elfiun 9150 dif1card 9750 infxpenlem 9753 cfeq0 9996 cfsuc 9997 cfflb 9999 cfslb2n 10008 cofsmo 10009 domtriomlem 10182 axdc3lem4 10193 axdc4lem 10195 ttukey2g 10256 tskxpss 10512 grudomon 10557 elnpi 10728 dedekind 11121 nn0n0n1ge2b 12284 fzind 12401 suprzcl2 12660 icoshft 13187 fzen 13255 hashgt23el 14120 hashbclem 14145 seqcoll 14159 relexpsucl 14723 relexpsucr 14724 relexpfld 14741 shftuz 14761 mulgcd 16237 algcvga 16265 lcmneg 16289 ressbas 16928 ressbasOLD 16929 resseqnbas 16932 resslemOLD 16933 ressress 16939 psss 18279 tsrlemax 18285 isnmgm 18311 gsummgmpropd 18346 iscmnd 19380 ring1ne0 19811 unitmulclb 19888 isdrngd 19997 issrngd 20102 rmodislmodlem 20171 rmodislmod 20172 rmodislmodOLD 20173 abvn0b 20554 isphld 20840 mpfaddcl 21296 mpfmulcl 21297 pf1addcl 21500 pf1mulcl 21501 fitop 22030 hausnei2 22485 ordtt1 22511 locfincmp 22658 basqtop 22843 filfi 22991 fgcl 23010 neifil 23012 filuni 23017 cnextcn 23199 prdsmet 23504 blssps 23558 blss 23559 metcnp3 23677 hlhil 24588 volsup2 24750 sincosq1sgn 25636 sincosq2sgn 25637 sincosq3sgn 25638 sincosq4sgn 25639 sinq12ge0 25646 bcmono 26406 iswlkg 27961 umgrwwlks2on 28301 clwlkclwwlkfo 28352 3cyclfrgrrn1 28628 grpodivf 28879 ipf 29054 shintcli 29670 spanuni 29885 adjadj 30277 unopadj2 30279 hmopadj 30280 hmopbdoptHIL 30329 resvsca 31508 resvlem 31509 resvlemOLD 31510 submateq 31738 esumcocn 32027 bnj1379 32789 bnj571 32865 bnj594 32871 bnj580 32872 bnj600 32878 bnj1189 32968 bnj1321 32986 bnj1384 32991 f1resrcmplf1dlem 33037 hashfundm 33053 cplgredgex 33061 cusgr3cyclex 33077 loop1cycl 33078 umgr2cycllem 33081 umgr2cycl 33082 acycgr2v 33091 cusgracyclt3v 33097 climuzcnv 33608 fness 34517 bj-idreseq 35312 bj-imdiridlem 35335 neificl 35890 metf1o 35892 isismty 35938 ismtybndlem 35943 ablo4pnp 36017 divrngcl 36094 keridl 36169 prnc 36204 lsmsatcv 37003 llncvrlpln2 37550 lplncvrlvol2 37608 linepsubN 37745 pmapsub 37761 dalawlem10 37873 dalawlem13 37876 dalawlem14 37877 dalaw 37879 diaf11N 39042 dibf11N 39154 ismrcd1 40500 ismrcd2 40501 mzpincl 40536 mzpadd 40540 mzpmul 40541 pellfundge 40684 imasgim 40905 sqrtcval 41202 stoweidlem2 43497 stoweidlem17 43512 imaelsetpreimafv 44799 opnneir 46152 i0oii 46165 io1ii 46166 |
Copyright terms: Public domain | W3C validator |