| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3expib | Structured version Visualization version GIF version | ||
| Description: Exportation from triple conjunction. (Contributed by NM, 19-May-2007.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expib | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1119 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: 3anidm12 1421 mob 3700 dfss2 3944 eqbrrdva 5849 f1oiso2 7344 frxp 8123 onfununi 8353 smoel2 8375 smoiso2 8381 3ecoptocl 8821 ssfi 9185 f1domfi 9193 rex2dom 9252 fodomfib 9339 dffi2 9433 elfiun 9440 dif1card 10022 infxpenlem 10025 cfeq0 10268 cfsuc 10269 cfflb 10271 cfslb2n 10280 cofsmo 10281 domtriomlem 10454 axdc3lem4 10465 axdc4lem 10467 ttukey2g 10528 tskxpss 10784 grudomon 10829 elnpi 11000 dedekind 11396 nn0n0n1ge2b 12568 fzind 12689 suprzcl2 12952 icoshft 13488 fzen 13556 hashgt23el 14440 hashfundm 14458 hashbclem 14468 seqcoll 14480 relexpsucl 15048 relexpsucr 15049 relexpfld 15066 shftuz 15086 mulgcd 16565 algcvga 16596 lcmneg 16620 ressbas 17255 resseqnbas 17261 ressress 17266 psss 18588 tsrlemax 18594 isnmgm 18620 gsummgmpropd 18657 issgrpd 18706 iscmnd 19773 ring1ne0 20257 unitmulclb 20339 isdrngd 20723 isdrngdOLD 20725 abvn0b 20794 issrngd 20813 rmodislmodlem 20884 rmodislmod 20885 isphld 21612 mpfaddcl 22061 mpfmulcl 22062 pf1addcl 22289 pf1mulcl 22290 fitop 22836 hausnei2 23289 ordtt1 23315 locfincmp 23462 basqtop 23647 filfi 23795 fgcl 23814 neifil 23816 filuni 23821 cnextcn 24003 prdsmet 24307 blssps 24361 blss 24362 metcnp3 24477 hlhil 25393 volsup2 25556 sincosq1sgn 26457 sincosq2sgn 26458 sincosq3sgn 26459 sincosq4sgn 26460 sinq12ge0 26467 bcmono 27238 iswlkg 29539 umgrwwlks2on 29885 clwlkclwwlkfo 29936 3cyclfrgrrn1 30212 grpodivf 30465 ipf 30640 shintcli 31256 spanuni 31471 adjadj 31863 unopadj2 31865 hmopadj 31866 hmopbdoptHIL 31915 resvsca 33294 resvlem 33295 submateq 33786 esumcocn 34057 bnj1379 34807 bnj571 34883 bnj594 34889 bnj580 34890 bnj600 34896 bnj1189 34986 bnj1321 35004 bnj1384 35009 f1resrcmplf1dlem 35063 cplgredgex 35089 cusgr3cyclex 35104 loop1cycl 35105 umgr2cycllem 35108 umgr2cycl 35109 acycgr2v 35118 cusgracyclt3v 35124 climuzcnv 35639 fness 36313 bj-idreseq 37126 bj-imdiridlem 37149 neificl 37723 metf1o 37725 isismty 37771 ismtybndlem 37776 ablo4pnp 37850 divrngcl 37927 keridl 38002 prnc 38037 lsmsatcv 38974 llncvrlpln2 39522 lplncvrlvol2 39580 linepsubN 39717 pmapsub 39733 dalawlem10 39845 dalawlem13 39848 dalawlem14 39849 dalaw 39851 diaf11N 41014 dibf11N 41126 ismrcd1 42668 ismrcd2 42669 mzpincl 42704 mzpadd 42708 mzpmul 42709 pellfundge 42852 imasgim 43071 sqrtcval 43612 stoweidlem2 45979 stoweidlem17 45994 imaelsetpreimafv 47357 opnneir 48829 i0oii 48842 io1ii 48843 |
| Copyright terms: Public domain | W3C validator |