![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq12i | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
5 | 2, 4 | mpteq12dv 5257 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
6 | 5 | mptru 1544 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: partfun 6729 evlsval 22135 madufval 22666 cdj3lem3 32472 cdj3lem3b 32474 esumsnf 34030 esumrnmpt2 34034 measinb2 34189 eulerpart 34349 fiblem 34365 hoidmvlelem4 46521 smflimsup 46751 |
Copyright terms: Public domain | W3C validator |