MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12i Structured version   Visualization version   GIF version

Theorem mpteq12i 5180
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1 𝐴 = 𝐶
mpteq12i.2 𝐵 = 𝐷
Assertion
Ref Expression
mpteq12i (𝑥𝐴𝐵) = (𝑥𝐶𝐷)

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4 𝐴 = 𝐶
21a1i 11 . . 3 (⊤ → 𝐴 = 𝐶)
3 mpteq12i.2 . . . 4 𝐵 = 𝐷
43a1i 11 . . 3 (⊤ → 𝐵 = 𝐷)
52, 4mpteq12dv 5165 . 2 (⊤ → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
65mptru 1546 1 (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  cmpt 5157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-opab 5137  df-mpt 5158
This theorem is referenced by:  partfun  6580  evlsval  21296  madufval  21786  cdj3lem3  30800  cdj3lem3b  30802  esumsnf  32032  esumrnmpt2  32036  measinb2  32191  eulerpart  32349  fiblem  32365  hoidmvlelem4  44136  smflimsup  44361
  Copyright terms: Public domain W3C validator