| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
| mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
| 3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
| 5 | 2, 4 | mpteq12dv 5213 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| 6 | 5 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊤wtru 1540 ↦ cmpt 5205 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-opab 5186 df-mpt 5206 |
| This theorem is referenced by: partfun 6694 evlsval 22057 madufval 22590 cdj3lem3 32384 cdj3lem3b 32386 esumsnf 33999 esumrnmpt2 34003 measinb2 34158 eulerpart 34318 fiblem 34334 hoidmvlelem4 46546 smflimsup 46776 |
| Copyright terms: Public domain | W3C validator |