MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12i Structured version   Visualization version   GIF version

Theorem mpteq12i 5175
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1 𝐴 = 𝐶
mpteq12i.2 𝐵 = 𝐷
Assertion
Ref Expression
mpteq12i (𝑥𝐴𝐵) = (𝑥𝐶𝐷)

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4 𝐴 = 𝐶
21a1i 11 . . 3 (⊤ → 𝐴 = 𝐶)
3 mpteq12i.2 . . . 4 𝐵 = 𝐷
43a1i 11 . . 3 (⊤ → 𝐵 = 𝐷)
52, 4mpteq12dv 5160 . 2 (⊤ → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
65mptru 1550 1 (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  wtru 1544  cmpt 5152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-opab 5133  df-mpt 5153
This theorem is referenced by:  partfun  6561  evlsval  21181  madufval  21669  cdj3lem3  30676  cdj3lem3b  30678  esumsnf  31907  esumrnmpt2  31911  measinb2  32066  eulerpart  32224  fiblem  32240  hoidmvlelem4  43999  smflimsup  44221
  Copyright terms: Public domain W3C validator