Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq12i | Structured version Visualization version GIF version |
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
Ref | Expression |
---|---|
mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
5 | 2, 4 | mpteq12dv 5112 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
6 | 5 | mptru 1549 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ⊤wtru 1543 ↦ cmpt 5107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-opab 5090 df-mpt 5108 |
This theorem is referenced by: partfun 6478 evlsval 20893 madufval 21381 cdj3lem3 30365 cdj3lem3b 30367 esumsnf 31594 esumrnmpt2 31598 measinb2 31753 eulerpart 31911 fiblem 31927 hoidmvlelem4 43662 smflimsup 43884 |
Copyright terms: Public domain | W3C validator |