| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
| mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
| 3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
| 5 | 2, 4 | mpteq12dv 5202 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| 6 | 5 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5178 df-mpt 5197 |
| This theorem is referenced by: partfun 6673 evlsval 21999 madufval 22530 cdj3lem3 32374 cdj3lem3b 32376 esumsnf 34062 esumrnmpt2 34066 measinb2 34221 eulerpart 34381 fiblem 34397 hoidmvlelem4 46569 smflimsup 46799 |
| Copyright terms: Public domain | W3C validator |