| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq12i | Structured version Visualization version GIF version | ||
| Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.) |
| Ref | Expression |
|---|---|
| mpteq12i.1 | ⊢ 𝐴 = 𝐶 |
| mpteq12i.2 | ⊢ 𝐵 = 𝐷 |
| Ref | Expression |
|---|---|
| mpteq12i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq12i.1 | . . . 4 ⊢ 𝐴 = 𝐶 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐶) |
| 3 | mpteq12i.2 | . . . 4 ⊢ 𝐵 = 𝐷 | |
| 4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → 𝐵 = 𝐷) |
| 5 | 2, 4 | mpteq12dv 5182 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷)) |
| 6 | 5 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐶 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: partfun 6636 evlsval 22032 madufval 22572 cdj3lem3 32439 cdj3lem3b 32441 esumsnf 34149 esumrnmpt2 34153 measinb2 34308 eulerpart 34467 fiblem 34483 dfsucmap3 38549 dfsucmap2 38550 hoidmvlelem4 46758 smflimsup 46988 |
| Copyright terms: Public domain | W3C validator |