MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq12i Structured version   Visualization version   GIF version

Theorem mpteq12i 5212
Description: An equality inference for the maps-to notation. (Contributed by Scott Fenton, 27-Oct-2010.) (Revised by Mario Carneiro, 16-Dec-2013.)
Hypotheses
Ref Expression
mpteq12i.1 𝐴 = 𝐶
mpteq12i.2 𝐵 = 𝐷
Assertion
Ref Expression
mpteq12i (𝑥𝐴𝐵) = (𝑥𝐶𝐷)

Proof of Theorem mpteq12i
StepHypRef Expression
1 mpteq12i.1 . . . 4 𝐴 = 𝐶
21a1i 11 . . 3 (⊤ → 𝐴 = 𝐶)
3 mpteq12i.2 . . . 4 𝐵 = 𝐷
43a1i 11 . . 3 (⊤ → 𝐵 = 𝐷)
52, 4mpteq12dv 5202 . 2 (⊤ → (𝑥𝐴𝐵) = (𝑥𝐶𝐷))
65mptru 1547 1 (𝑥𝐴𝐵) = (𝑥𝐶𝐷)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  cmpt 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-opab 5178  df-mpt 5197
This theorem is referenced by:  partfun  6673  evlsval  21999  madufval  22530  cdj3lem3  32374  cdj3lem3b  32376  esumsnf  34062  esumrnmpt2  34066  measinb2  34221  eulerpart  34381  fiblem  34397  hoidmvlelem4  46569  smflimsup  46799
  Copyright terms: Public domain W3C validator