| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5202 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5188 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 {copab 5181 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-opab 5182 df-mpt 5202 |
| This theorem is referenced by: ovmpt3rab1 7665 nfof 7677 mpocurryvald 8269 nfrdg 8428 mapxpen 9157 nfoi 9528 seqof2 14078 nfsum1 15706 nfsum 15707 fsumrlim 15827 fsumo1 15828 nfcprod1 15924 nfcprod 15925 gsum2d2 19955 prdsgsum 19962 dprd2d2 20027 gsumdixp 20279 mpfrcl 22043 ptbasfi 23519 ptcnplem 23559 ptcnp 23560 cnmptk2 23624 cnmpt2k 23626 xkocnv 23752 fsumcn 24812 itg2cnlem1 25714 nfitg 25728 itgfsum 25780 dvmptfsum 25931 itgulm2 26370 lgamgulm2 26998 nosupbnd2 27680 noinfbnd2 27695 fmptcof2 32635 fpwrelmap 32710 nfesum2 34072 sigapildsys 34193 oms0 34329 bnj1366 34860 exrecfnlem 37397 poimirlem26 37670 cdleme32d 40463 cdleme32f 40465 cdlemksv2 40866 cdlemkuv2 40886 hlhilset 41953 pwsgprod 42567 aomclem8 43085 binomcxplemdvsum 44379 refsum2cn 45062 fmuldfeq 45612 fprodcnlem 45628 fprodcn 45629 fnlimfv 45692 fnlimcnv 45696 fnlimfvre 45703 fnlimfvre2 45706 fnlimf 45707 fnlimabslt 45708 fprodcncf 45929 dvnmptdivc 45967 dvmptfprod 45974 dvnprodlem1 45975 stoweidlem26 46055 stoweidlem31 46060 stoweidlem34 46063 stoweidlem35 46064 stoweidlem42 46071 stoweidlem48 46077 stoweidlem59 46088 fourierdlem31 46167 fourierdlem112 46247 sge0iunmptlemfi 46442 sge0iunmptlemre 46444 sge0iunmpt 46447 hoicvrrex 46585 ovncvrrp 46593 ovnhoilem1 46630 ovnlecvr2 46639 vonicc 46714 smflim 46806 smfmullem4 46823 smflim2 46835 smflimmpt 46839 smfsup 46843 smfsupmpt 46844 smfinf 46847 smfinfmpt 46848 smflimsuplem2 46850 smflimsuplem5 46853 smflimsup 46857 smflimsupmpt 46858 smfliminf 46860 smfliminfmpt 46861 fsupdm 46871 finfdm 46875 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |