![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5250 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2926 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 5235 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 Ⅎwnfc 2893 {copab 5228 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: ovmpt3rab1 7708 nfof 7720 mpocurryvald 8311 nfrdg 8470 mapxpen 9209 nfoi 9583 seqof2 14111 nfsum1 15738 nfsum 15739 fsumrlim 15859 fsumo1 15860 nfcprod1 15956 nfcprod 15957 gsum2d2 20016 prdsgsum 20023 dprd2d2 20088 gsumdixp 20342 mpfrcl 22132 ptbasfi 23610 ptcnplem 23650 ptcnp 23651 cnmptk2 23715 cnmpt2k 23717 xkocnv 23843 fsumcn 24913 itg2cnlem1 25816 nfitg 25830 itgfsum 25882 dvmptfsum 26033 itgulm2 26470 lgamgulm2 27097 nosupbnd2 27779 noinfbnd2 27794 fmptcof2 32675 fpwrelmap 32747 nfesum2 34005 sigapildsys 34126 oms0 34262 bnj1366 34805 exrecfnlem 37345 poimirlem26 37606 cdleme32d 40401 cdleme32f 40403 cdlemksv2 40804 cdlemkuv2 40824 hlhilset 41891 pwsgprod 42499 aomclem8 43018 binomcxplemdvsum 44324 refsum2cn 44938 fmuldfeq 45504 fprodcnlem 45520 fprodcn 45521 fnlimfv 45584 fnlimcnv 45588 fnlimfvre 45595 fnlimfvre2 45598 fnlimf 45599 fnlimabslt 45600 fprodcncf 45821 dvnmptdivc 45859 dvmptfprod 45866 dvnprodlem1 45867 stoweidlem26 45947 stoweidlem31 45952 stoweidlem34 45955 stoweidlem35 45956 stoweidlem42 45963 stoweidlem48 45969 stoweidlem59 45980 fourierdlem31 46059 fourierdlem112 46139 sge0iunmptlemfi 46334 sge0iunmptlemre 46336 sge0iunmpt 46339 hoicvrrex 46477 ovncvrrp 46485 ovnhoilem1 46522 ovnlecvr2 46531 vonicc 46606 smflim 46698 smfmullem4 46715 smflim2 46727 smflimmpt 46731 smfsup 46735 smfsupmpt 46736 smfinf 46739 smfinfmpt 46740 smflimsuplem2 46742 smflimsuplem5 46745 smflimsup 46749 smflimsupmpt 46750 smfliminf 46752 smfliminfmpt 46753 fsupdm 46763 finfdm 46767 aacllem 48895 |
Copyright terms: Public domain | W3C validator |