Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5163 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2926 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1906 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 5148 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2907 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1542 ∈ wcel 2110 Ⅎwnfc 2889 {copab 5141 ↦ cmpt 5162 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-opab 5142 df-mpt 5163 |
This theorem is referenced by: ovmpt3rab1 7521 nfof 7533 mpocurryvald 8077 nfrdg 8236 mapxpen 8912 nfoi 9251 seqof2 13779 nfsum1 15399 nfsum 15400 nfsumOLD 15401 fsumrlim 15521 fsumo1 15522 nfcprod1 15618 nfcprod 15619 gsum2d2 19573 prdsgsum 19580 dprd2d2 19645 gsumdixp 19846 mpfrcl 21293 ptbasfi 22730 ptcnplem 22770 ptcnp 22771 cnmptk2 22835 cnmpt2k 22837 xkocnv 22963 fsumcn 24031 itg2cnlem1 24924 nfitg 24937 itgfsum 24989 dvmptfsum 25137 itgulm2 25566 lgamgulm2 26183 fmptcof2 30990 fpwrelmap 31064 nfesum2 32005 sigapildsys 32126 oms0 32260 bnj1366 32805 nosupbnd2 33915 noinfbnd2 33930 exrecfnlem 35546 poimirlem26 35799 cdleme32d 38454 cdleme32f 38456 cdlemksv2 38857 cdlemkuv2 38877 hlhilset 39944 pwsgprod 40266 aomclem8 40883 binomcxplemdvsum 41943 refsum2cn 42551 fmuldfeq 43095 fprodcnlem 43111 fprodcn 43112 fnlimfv 43175 fnlimcnv 43179 fnlimfvre 43186 fnlimfvre2 43189 fnlimf 43190 fnlimabslt 43191 fprodcncf 43412 dvnmptdivc 43450 dvmptfprod 43457 dvnprodlem1 43458 stoweidlem26 43538 stoweidlem31 43543 stoweidlem34 43546 stoweidlem35 43547 stoweidlem42 43554 stoweidlem48 43560 stoweidlem59 43571 fourierdlem31 43650 fourierdlem112 43730 sge0iunmptlemfi 43922 sge0iunmptlemre 43924 sge0iunmpt 43927 hoicvrrex 44065 ovncvrrp 44073 ovnhoilem1 44110 ovnlecvr2 44119 vonicc 44194 smflim 44280 smfmullem4 44296 smflim2 44307 smflimmpt 44311 smfsup 44315 smfsupmpt 44316 smfinf 44319 smfinfmpt 44320 smflimsuplem2 44322 smflimsuplem5 44325 smflimsup 44329 smflimsupmpt 44330 smfliminf 44332 smfliminfmpt 44333 aacllem 46474 |
Copyright terms: Public domain | W3C validator |