![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5231 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2920 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1896 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 5216 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1536 ∈ wcel 2105 Ⅎwnfc 2887 {copab 5209 ↦ cmpt 5230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-opab 5210 df-mpt 5231 |
This theorem is referenced by: ovmpt3rab1 7690 nfof 7702 mpocurryvald 8293 nfrdg 8452 mapxpen 9181 nfoi 9551 seqof2 14097 nfsum1 15722 nfsum 15723 fsumrlim 15843 fsumo1 15844 nfcprod1 15940 nfcprod 15941 gsum2d2 20006 prdsgsum 20013 dprd2d2 20078 gsumdixp 20332 mpfrcl 22126 ptbasfi 23604 ptcnplem 23644 ptcnp 23645 cnmptk2 23709 cnmpt2k 23711 xkocnv 23837 fsumcn 24907 itg2cnlem1 25810 nfitg 25824 itgfsum 25876 dvmptfsum 26027 itgulm2 26466 lgamgulm2 27093 nosupbnd2 27775 noinfbnd2 27790 fmptcof2 32673 fpwrelmap 32750 nfesum2 34021 sigapildsys 34142 oms0 34278 bnj1366 34821 exrecfnlem 37361 poimirlem26 37632 cdleme32d 40426 cdleme32f 40428 cdlemksv2 40829 cdlemkuv2 40849 hlhilset 41916 pwsgprod 42530 aomclem8 43049 binomcxplemdvsum 44350 refsum2cn 44975 fmuldfeq 45538 fprodcnlem 45554 fprodcn 45555 fnlimfv 45618 fnlimcnv 45622 fnlimfvre 45629 fnlimfvre2 45632 fnlimf 45633 fnlimabslt 45634 fprodcncf 45855 dvnmptdivc 45893 dvmptfprod 45900 dvnprodlem1 45901 stoweidlem26 45981 stoweidlem31 45986 stoweidlem34 45989 stoweidlem35 45990 stoweidlem42 45997 stoweidlem48 46003 stoweidlem59 46014 fourierdlem31 46093 fourierdlem112 46173 sge0iunmptlemfi 46368 sge0iunmptlemre 46370 sge0iunmpt 46373 hoicvrrex 46511 ovncvrrp 46519 ovnhoilem1 46556 ovnlecvr2 46565 vonicc 46640 smflim 46732 smfmullem4 46749 smflim2 46761 smflimmpt 46765 smfsup 46769 smfsupmpt 46770 smfinf 46773 smfinfmpt 46774 smflimsuplem2 46776 smflimsuplem5 46779 smflimsup 46783 smflimsupmpt 46784 smfliminf 46786 smfliminfmpt 46787 fsupdm 46797 finfdm 46801 aacllem 49031 |
Copyright terms: Public domain | W3C validator |