| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5189 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2909 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5176 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 {copab 5169 ↦ cmpt 5188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-opab 5170 df-mpt 5189 |
| This theorem is referenced by: ovmpt3rab1 7647 nfof 7659 mpocurryvald 8249 nfrdg 8382 mapxpen 9107 nfoi 9467 seqof2 14025 nfsum1 15656 nfsum 15657 fsumrlim 15777 fsumo1 15778 nfcprod1 15874 nfcprod 15875 gsum2d2 19904 prdsgsum 19911 dprd2d2 19976 gsumdixp 20228 mpfrcl 21992 ptbasfi 23468 ptcnplem 23508 ptcnp 23509 cnmptk2 23573 cnmpt2k 23575 xkocnv 23701 fsumcn 24761 itg2cnlem1 25662 nfitg 25676 itgfsum 25728 dvmptfsum 25879 itgulm2 26318 lgamgulm2 26946 nosupbnd2 27628 noinfbnd2 27643 fmptcof2 32581 fpwrelmap 32656 nfesum2 34031 sigapildsys 34152 oms0 34288 bnj1366 34819 exrecfnlem 37367 poimirlem26 37640 cdleme32d 40438 cdleme32f 40440 cdlemksv2 40841 cdlemkuv2 40861 hlhilset 41928 pwsgprod 42532 aomclem8 43050 binomcxplemdvsum 44344 refsum2cn 45032 fmuldfeq 45581 fprodcnlem 45597 fprodcn 45598 fnlimfv 45661 fnlimcnv 45665 fnlimfvre 45672 fnlimfvre2 45675 fnlimf 45676 fnlimabslt 45677 fprodcncf 45898 dvnmptdivc 45936 dvmptfprod 45943 dvnprodlem1 45944 stoweidlem26 46024 stoweidlem31 46029 stoweidlem34 46032 stoweidlem35 46033 stoweidlem42 46040 stoweidlem48 46046 stoweidlem59 46057 fourierdlem31 46136 fourierdlem112 46216 sge0iunmptlemfi 46411 sge0iunmptlemre 46413 sge0iunmpt 46416 hoicvrrex 46554 ovncvrrp 46562 ovnhoilem1 46599 ovnlecvr2 46608 vonicc 46683 smflim 46775 smfmullem4 46792 smflim2 46804 smflimmpt 46808 smfsup 46812 smfsupmpt 46813 smfinf 46816 smfinfmpt 46817 smflimsuplem2 46819 smflimsuplem5 46822 smflimsup 46826 smflimsupmpt 46827 smfliminf 46829 smfliminfmpt 46830 fsupdm 46840 finfdm 46844 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |