| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5177 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2913 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5164 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2893 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Ⅎwnfc 2880 {copab 5157 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: ovmpt3rab1 7613 nfof 7625 mpocurryvald 8209 nfrdg 8342 mapxpen 9067 nfoi 9411 seqof2 13974 nfsum1 15604 nfsum 15605 fsumrlim 15725 fsumo1 15726 nfcprod1 15822 nfcprod 15823 gsum2d2 19894 prdsgsum 19901 dprd2d2 19966 gsumdixp 20245 pwsgprod 20256 mpfrcl 22031 ptbasfi 23516 ptcnplem 23556 ptcnp 23557 cnmptk2 23621 cnmpt2k 23623 xkocnv 23749 fsumcn 24808 itg2cnlem1 25709 nfitg 25723 itgfsum 25775 dvmptfsum 25926 itgulm2 26365 lgamgulm2 26993 nosupbnd2 27675 noinfbnd2 27690 fmptcof2 32661 fpwrelmap 32740 nfesum2 34126 sigapildsys 34247 oms0 34382 bnj1366 34913 exrecfnlem 37496 poimirlem26 37759 cdleme32d 40616 cdleme32f 40618 cdlemksv2 41019 cdlemkuv2 41039 hlhilset 42106 aomclem8 43218 binomcxplemdvsum 44512 refsum2cn 45199 fmuldfeq 45745 fprodcnlem 45761 fprodcn 45762 fnlimfv 45823 fnlimcnv 45827 fnlimfvre 45834 fnlimfvre2 45837 fnlimf 45838 fnlimabslt 45839 fprodcncf 46060 dvnmptdivc 46098 dvmptfprod 46105 dvnprodlem1 46106 stoweidlem26 46186 stoweidlem31 46191 stoweidlem34 46194 stoweidlem35 46195 stoweidlem42 46202 stoweidlem48 46208 stoweidlem59 46219 fourierdlem31 46298 fourierdlem112 46378 sge0iunmptlemfi 46573 sge0iunmptlemre 46575 sge0iunmpt 46578 hoicvrrex 46716 ovncvrrp 46724 ovnhoilem1 46761 ovnlecvr2 46770 vonicc 46845 smflim 46937 smfmullem4 46954 smflim2 46966 smflimmpt 46970 smfsup 46974 smfsupmpt 46975 smfinf 46978 smfinfmpt 46979 smflimsuplem2 46981 smflimsuplem5 46984 smflimsup 46988 smflimsupmpt 46989 smfliminf 46991 smfliminfmpt 46992 fsupdm 47002 finfdm 47006 aacllem 49962 |
| Copyright terms: Public domain | W3C validator |