| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5184 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2909 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5171 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 {copab 5164 ↦ cmpt 5183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-opab 5165 df-mpt 5184 |
| This theorem is referenced by: ovmpt3rab1 7627 nfof 7639 mpocurryvald 8226 nfrdg 8359 mapxpen 9084 nfoi 9443 seqof2 14001 nfsum1 15632 nfsum 15633 fsumrlim 15753 fsumo1 15754 nfcprod1 15850 nfcprod 15851 gsum2d2 19880 prdsgsum 19887 dprd2d2 19952 gsumdixp 20204 mpfrcl 21968 ptbasfi 23444 ptcnplem 23484 ptcnp 23485 cnmptk2 23549 cnmpt2k 23551 xkocnv 23677 fsumcn 24737 itg2cnlem1 25638 nfitg 25652 itgfsum 25704 dvmptfsum 25855 itgulm2 26294 lgamgulm2 26922 nosupbnd2 27604 noinfbnd2 27619 fmptcof2 32554 fpwrelmap 32629 nfesum2 34004 sigapildsys 34125 oms0 34261 bnj1366 34792 exrecfnlem 37340 poimirlem26 37613 cdleme32d 40411 cdleme32f 40413 cdlemksv2 40814 cdlemkuv2 40834 hlhilset 41901 pwsgprod 42505 aomclem8 43023 binomcxplemdvsum 44317 refsum2cn 45005 fmuldfeq 45554 fprodcnlem 45570 fprodcn 45571 fnlimfv 45634 fnlimcnv 45638 fnlimfvre 45645 fnlimfvre2 45648 fnlimf 45649 fnlimabslt 45650 fprodcncf 45871 dvnmptdivc 45909 dvmptfprod 45916 dvnprodlem1 45917 stoweidlem26 45997 stoweidlem31 46002 stoweidlem34 46005 stoweidlem35 46006 stoweidlem42 46013 stoweidlem48 46019 stoweidlem59 46030 fourierdlem31 46109 fourierdlem112 46189 sge0iunmptlemfi 46384 sge0iunmptlemre 46386 sge0iunmpt 46389 hoicvrrex 46527 ovncvrrp 46535 ovnhoilem1 46572 ovnlecvr2 46581 vonicc 46656 smflim 46748 smfmullem4 46765 smflim2 46777 smflimmpt 46781 smfsup 46785 smfsupmpt 46786 smfinf 46789 smfinfmpt 46790 smflimsuplem2 46792 smflimsuplem5 46795 smflimsup 46799 smflimsupmpt 46800 smfliminf 46802 smfliminfmpt 46803 fsupdm 46813 finfdm 46817 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |