| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5177 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2909 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5164 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 {copab 5157 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: ovmpt3rab1 7611 nfof 7623 mpocurryvald 8210 nfrdg 8343 mapxpen 9067 nfoi 9425 seqof2 13985 nfsum1 15615 nfsum 15616 fsumrlim 15736 fsumo1 15737 nfcprod1 15833 nfcprod 15834 gsum2d2 19871 prdsgsum 19878 dprd2d2 19943 gsumdixp 20222 mpfrcl 22008 ptbasfi 23484 ptcnplem 23524 ptcnp 23525 cnmptk2 23589 cnmpt2k 23591 xkocnv 23717 fsumcn 24777 itg2cnlem1 25678 nfitg 25692 itgfsum 25744 dvmptfsum 25895 itgulm2 26334 lgamgulm2 26962 nosupbnd2 27644 noinfbnd2 27659 fmptcof2 32614 fpwrelmap 32689 nfesum2 34010 sigapildsys 34131 oms0 34267 bnj1366 34798 exrecfnlem 37355 poimirlem26 37628 cdleme32d 40426 cdleme32f 40428 cdlemksv2 40829 cdlemkuv2 40849 hlhilset 41916 pwsgprod 42520 aomclem8 43037 binomcxplemdvsum 44331 refsum2cn 45019 fmuldfeq 45568 fprodcnlem 45584 fprodcn 45585 fnlimfv 45648 fnlimcnv 45652 fnlimfvre 45659 fnlimfvre2 45662 fnlimf 45663 fnlimabslt 45664 fprodcncf 45885 dvnmptdivc 45923 dvmptfprod 45930 dvnprodlem1 45931 stoweidlem26 46011 stoweidlem31 46016 stoweidlem34 46019 stoweidlem35 46020 stoweidlem42 46027 stoweidlem48 46033 stoweidlem59 46044 fourierdlem31 46123 fourierdlem112 46203 sge0iunmptlemfi 46398 sge0iunmptlemre 46400 sge0iunmpt 46403 hoicvrrex 46541 ovncvrrp 46549 ovnhoilem1 46586 ovnlecvr2 46595 vonicc 46670 smflim 46762 smfmullem4 46779 smflim2 46791 smflimmpt 46795 smfsup 46799 smfsupmpt 46800 smfinf 46803 smfinfmpt 46804 smflimsuplem2 46806 smflimsuplem5 46809 smflimsup 46813 smflimsupmpt 46814 smfliminf 46816 smfliminfmpt 46817 fsupdm 46827 finfdm 46831 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |