Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5165 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2892 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2922 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 5150 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1539 ∈ wcel 2104 Ⅎwnfc 2885 {copab 5143 ↦ cmpt 5164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-opab 5144 df-mpt 5165 |
This theorem is referenced by: ovmpt3rab1 7559 nfof 7571 mpocurryvald 8117 nfrdg 8276 mapxpen 8968 nfoi 9317 seqof2 13827 nfsum1 15446 nfsum 15447 nfsumOLD 15448 fsumrlim 15568 fsumo1 15569 nfcprod1 15665 nfcprod 15666 gsum2d2 19620 prdsgsum 19627 dprd2d2 19692 gsumdixp 19893 mpfrcl 21340 ptbasfi 22777 ptcnplem 22817 ptcnp 22818 cnmptk2 22882 cnmpt2k 22884 xkocnv 23010 fsumcn 24078 itg2cnlem1 24971 nfitg 24984 itgfsum 25036 dvmptfsum 25184 itgulm2 25613 lgamgulm2 26230 fmptcof2 31039 fpwrelmap 31113 nfesum2 32054 sigapildsys 32175 oms0 32309 bnj1366 32854 nosupbnd2 33964 noinfbnd2 33979 exrecfnlem 35594 poimirlem26 35847 cdleme32d 38500 cdleme32f 38502 cdlemksv2 38903 cdlemkuv2 38923 hlhilset 39990 pwsgprod 40306 aomclem8 40924 binomcxplemdvsum 42011 refsum2cn 42619 fmuldfeq 43173 fprodcnlem 43189 fprodcn 43190 fnlimfv 43253 fnlimcnv 43257 fnlimfvre 43264 fnlimfvre2 43267 fnlimf 43268 fnlimabslt 43269 fprodcncf 43490 dvnmptdivc 43528 dvmptfprod 43535 dvnprodlem1 43536 stoweidlem26 43616 stoweidlem31 43621 stoweidlem34 43624 stoweidlem35 43625 stoweidlem42 43632 stoweidlem48 43638 stoweidlem59 43649 fourierdlem31 43728 fourierdlem112 43808 sge0iunmptlemfi 44001 sge0iunmptlemre 44003 sge0iunmpt 44006 hoicvrrex 44144 ovncvrrp 44152 ovnhoilem1 44189 ovnlecvr2 44198 vonicc 44273 smflim 44365 smfmullem4 44382 smflim2 44393 smflimmpt 44397 smfsup 44401 smfsupmpt 44402 smfinf 44405 smfinfmpt 44406 smflimsuplem2 44408 smflimsuplem5 44411 smflimsup 44415 smflimsupmpt 44416 smfliminf 44418 smfliminfmpt 44419 aacllem 46563 |
Copyright terms: Public domain | W3C validator |