| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5192 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2884 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2910 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5179 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 {copab 5172 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-opab 5173 df-mpt 5192 |
| This theorem is referenced by: ovmpt3rab1 7650 nfof 7662 mpocurryvald 8252 nfrdg 8385 mapxpen 9113 nfoi 9474 seqof2 14032 nfsum1 15663 nfsum 15664 fsumrlim 15784 fsumo1 15785 nfcprod1 15881 nfcprod 15882 gsum2d2 19911 prdsgsum 19918 dprd2d2 19983 gsumdixp 20235 mpfrcl 21999 ptbasfi 23475 ptcnplem 23515 ptcnp 23516 cnmptk2 23580 cnmpt2k 23582 xkocnv 23708 fsumcn 24768 itg2cnlem1 25669 nfitg 25683 itgfsum 25735 dvmptfsum 25886 itgulm2 26325 lgamgulm2 26953 nosupbnd2 27635 noinfbnd2 27650 fmptcof2 32588 fpwrelmap 32663 nfesum2 34038 sigapildsys 34159 oms0 34295 bnj1366 34826 exrecfnlem 37374 poimirlem26 37647 cdleme32d 40445 cdleme32f 40447 cdlemksv2 40848 cdlemkuv2 40868 hlhilset 41935 pwsgprod 42539 aomclem8 43057 binomcxplemdvsum 44351 refsum2cn 45039 fmuldfeq 45588 fprodcnlem 45604 fprodcn 45605 fnlimfv 45668 fnlimcnv 45672 fnlimfvre 45679 fnlimfvre2 45682 fnlimf 45683 fnlimabslt 45684 fprodcncf 45905 dvnmptdivc 45943 dvmptfprod 45950 dvnprodlem1 45951 stoweidlem26 46031 stoweidlem31 46036 stoweidlem34 46039 stoweidlem35 46040 stoweidlem42 46047 stoweidlem48 46053 stoweidlem59 46064 fourierdlem31 46143 fourierdlem112 46223 sge0iunmptlemfi 46418 sge0iunmptlemre 46420 sge0iunmpt 46423 hoicvrrex 46561 ovncvrrp 46569 ovnhoilem1 46606 ovnlecvr2 46615 vonicc 46690 smflim 46782 smfmullem4 46799 smflim2 46811 smflimmpt 46815 smfsup 46819 smfsupmpt 46820 smfinf 46823 smfinfmpt 46824 smflimsuplem2 46826 smflimsuplem5 46829 smflimsup 46833 smflimsupmpt 46834 smfliminf 46836 smfliminfmpt 46837 fsupdm 46847 finfdm 46851 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |