Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
Ref | Expression |
---|---|
nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5162 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2895 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfeq2 2925 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
6 | 3, 5 | nfan 1905 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
7 | 6 | nfopab 5147 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
8 | 1, 7 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2109 Ⅎwnfc 2888 {copab 5140 ↦ cmpt 5161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-opab 5141 df-mpt 5162 |
This theorem is referenced by: ovmpt3rab1 7518 nfof 7530 mpocurryvald 8070 nfrdg 8229 mapxpen 8895 nfoi 9234 seqof2 13762 nfsum1 15382 nfsum 15383 nfsumOLD 15384 fsumrlim 15504 fsumo1 15505 nfcprod1 15601 nfcprod 15602 gsum2d2 19556 prdsgsum 19563 dprd2d2 19628 gsumdixp 19829 mpfrcl 21276 ptbasfi 22713 ptcnplem 22753 ptcnp 22754 cnmptk2 22818 cnmpt2k 22820 xkocnv 22946 fsumcn 24014 itg2cnlem1 24907 nfitg 24920 itgfsum 24972 dvmptfsum 25120 itgulm2 25549 lgamgulm2 26166 fmptcof2 30973 fpwrelmap 31047 nfesum2 31988 sigapildsys 32109 oms0 32243 bnj1366 32788 nosupbnd2 33898 noinfbnd2 33913 exrecfnlem 35529 poimirlem26 35782 cdleme32d 38437 cdleme32f 38439 cdlemksv2 38840 cdlemkuv2 38860 hlhilset 39927 pwsgprod 40249 aomclem8 40866 binomcxplemdvsum 41926 refsum2cn 42534 fmuldfeq 43078 fprodcnlem 43094 fprodcn 43095 fnlimfv 43158 fnlimcnv 43162 fnlimfvre 43169 fnlimfvre2 43172 fnlimf 43173 fnlimabslt 43174 fprodcncf 43395 dvnmptdivc 43433 dvmptfprod 43440 dvnprodlem1 43441 stoweidlem26 43521 stoweidlem31 43526 stoweidlem34 43529 stoweidlem35 43530 stoweidlem42 43537 stoweidlem48 43543 stoweidlem59 43554 fourierdlem31 43633 fourierdlem112 43713 sge0iunmptlemfi 43905 sge0iunmptlemre 43907 sge0iunmpt 43910 hoicvrrex 44048 ovncvrrp 44056 ovnhoilem1 44093 ovnlecvr2 44102 vonicc 44177 smflim 44263 smfmullem4 44279 smflim2 44290 smflimmpt 44294 smfsup 44298 smfsupmpt 44299 smfinf 44302 smfinfmpt 44303 smflimsuplem2 44305 smflimsuplem5 44308 smflimsup 44312 smflimsupmpt 44313 smfliminf 44315 smfliminfmpt 44316 aacllem 46457 |
Copyright terms: Public domain | W3C validator |