| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfmpt | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.) |
| Ref | Expression |
|---|---|
| nfmpt.1 | ⊢ Ⅎ𝑥𝐴 |
| nfmpt.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfmpt | ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5168 | . 2 ⊢ (𝑦 ∈ 𝐴 ↦ 𝐵) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} | |
| 2 | nfmpt.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfmpt.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfeq2 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑧 = 𝐵 |
| 6 | 3, 5 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵) |
| 7 | 6 | nfopab 5155 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ (𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐵)} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 {copab 5148 ↦ cmpt 5167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-opab 5149 df-mpt 5168 |
| This theorem is referenced by: ovmpt3rab1 7599 nfof 7611 mpocurryvald 8195 nfrdg 8328 mapxpen 9051 nfoi 9395 seqof2 13962 nfsum1 15592 nfsum 15593 fsumrlim 15713 fsumo1 15714 nfcprod1 15810 nfcprod 15811 gsum2d2 19881 prdsgsum 19888 dprd2d2 19953 gsumdixp 20232 mpfrcl 22015 ptbasfi 23491 ptcnplem 23531 ptcnp 23532 cnmptk2 23596 cnmpt2k 23598 xkocnv 23724 fsumcn 24783 itg2cnlem1 25684 nfitg 25698 itgfsum 25750 dvmptfsum 25901 itgulm2 26340 lgamgulm2 26968 nosupbnd2 27650 noinfbnd2 27665 fmptcof2 32631 fpwrelmap 32708 nfesum2 34046 sigapildsys 34167 oms0 34302 bnj1366 34833 exrecfnlem 37413 poimirlem26 37686 cdleme32d 40483 cdleme32f 40485 cdlemksv2 40886 cdlemkuv2 40906 hlhilset 41973 pwsgprod 42577 aomclem8 43094 binomcxplemdvsum 44388 refsum2cn 45075 fmuldfeq 45623 fprodcnlem 45639 fprodcn 45640 fnlimfv 45701 fnlimcnv 45705 fnlimfvre 45712 fnlimfvre2 45715 fnlimf 45716 fnlimabslt 45717 fprodcncf 45938 dvnmptdivc 45976 dvmptfprod 45983 dvnprodlem1 45984 stoweidlem26 46064 stoweidlem31 46069 stoweidlem34 46072 stoweidlem35 46073 stoweidlem42 46080 stoweidlem48 46086 stoweidlem59 46097 fourierdlem31 46176 fourierdlem112 46256 sge0iunmptlemfi 46451 sge0iunmptlemre 46453 sge0iunmpt 46456 hoicvrrex 46594 ovncvrrp 46602 ovnhoilem1 46639 ovnlecvr2 46648 vonicc 46723 smflim 46815 smfmullem4 46832 smflim2 46844 smflimmpt 46848 smfsup 46852 smfsupmpt 46853 smfinf 46856 smfinfmpt 46857 smflimsuplem2 46859 smflimsuplem5 46862 smflimsup 46866 smflimsupmpt 46867 smfliminf 46869 smfliminfmpt 46870 fsupdm 46880 finfdm 46884 aacllem 49833 |
| Copyright terms: Public domain | W3C validator |