Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   GIF version

Theorem esumsnf 32436
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0 𝑘𝐵
esumsnf.1 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
esumsnf.2 (𝜑𝑀𝑉)
esumsnf.3 (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsnf (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem esumsnf
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 32400 . . 3 Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴))
21a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)))
3 eqid 2737 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
4 snfi 8921 . . . . 5 {𝑀} ∈ Fin
54a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
6 elsni 4601 . . . . . . . . 9 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
7 esumsnf.1 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
86, 7sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐵)
98mpteq2dva 5203 . . . . . . 7 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐵))
10 esumsnf.2 . . . . . . . 8 (𝜑𝑀𝑉)
11 esumsnf.3 . . . . . . . 8 (𝜑𝐵 ∈ (0[,]+∞))
12 fmptsn 7107 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑙 ∈ {𝑀} ↦ 𝐵))
13 nfcv 2905 . . . . . . . . . 10 𝑙𝐵
14 esumsnf.0 . . . . . . . . . 10 𝑘𝐵
15 eqidd 2738 . . . . . . . . . 10 (𝑘 = 𝑙𝐵 = 𝐵)
1613, 14, 15cbvmpt 5214 . . . . . . . . 9 (𝑘 ∈ {𝑀} ↦ 𝐵) = (𝑙 ∈ {𝑀} ↦ 𝐵)
1712, 16eqtr4di 2795 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
1810, 11, 17syl2anc 584 . . . . . . 7 (𝜑 → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
199, 18eqtr4d 2780 . . . . . 6 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩})
20 fsng 7077 . . . . . . 7 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2110, 11, 20syl2anc 584 . . . . . 6 (𝜑 → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2219, 21mpbird 256 . . . . 5 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵})
2311snssd 4767 . . . . 5 (𝜑 → {𝐵} ⊆ (0[,]+∞))
2422, 23fssd 6681 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶(0[,]+∞))
25 xrltso 12988 . . . . . . 7 < Or ℝ*
2625a1i 11 . . . . . 6 (𝜑 → < Or ℝ*)
27 0xr 11135 . . . . . . 7 0 ∈ ℝ*
2827a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
29 elxrge0 13302 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3011, 29sylib 217 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3130simpld 495 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
32 suppr 9340 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
3326, 28, 31, 32syl3anc 1371 . . . . 5 (𝜑 → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
34 0fin 9048 . . . . . . . . . . 11 ∅ ∈ Fin
3534a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Fin)
36 reseq2 5928 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅))
37 res0 5937 . . . . . . . . . . . . . 14 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅) = ∅
3836, 37eqtrdi 2793 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ∅)
3938oveq2d 7365 . . . . . . . . . . . 12 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
40 xrge00 31671 . . . . . . . . . . . . 13 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4140gsum0 18473 . . . . . . . . . . . 12 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
4239, 41eqtrdi 2793 . . . . . . . . . . 11 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
4342adantl 482 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
44 reseq2 5928 . . . . . . . . . . . . 13 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}))
45 ssid 3964 . . . . . . . . . . . . . 14 {𝑀} ⊆ {𝑀}
46 resmpt 5987 . . . . . . . . . . . . . 14 ({𝑀} ⊆ {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4745, 46ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴)
4844, 47eqtrdi 2793 . . . . . . . . . . . 12 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4948oveq2d 7365 . . . . . . . . . . 11 (𝑥 = {𝑀} → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
50 xrge0base 31670 . . . . . . . . . . . 12 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
51 xrge0cmn 20762 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
52 cmnmnd 19508 . . . . . . . . . . . . . 14 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
55 nfv 1917 . . . . . . . . . . . 12 𝑘𝜑
5650, 54, 10, 11, 7, 55, 14gsumsnfd 19657 . . . . . . . . . . 11 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐵)
5749, 56sylan9eqr 2799 . . . . . . . . . 10 ((𝜑𝑥 = {𝑀}) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 𝐵)
5835, 5, 28, 11, 43, 57fmptpr 7112 . . . . . . . . 9 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
59 pwsn 4855 . . . . . . . . . . . . 13 𝒫 {𝑀} = {∅, {𝑀}}
60 prssi 4779 . . . . . . . . . . . . . 14 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → {∅, {𝑀}} ⊆ Fin)
6134, 4, 60mp2an 690 . . . . . . . . . . . . 13 {∅, {𝑀}} ⊆ Fin
6259, 61eqsstri 3976 . . . . . . . . . . . 12 𝒫 {𝑀} ⊆ Fin
63 df-ss 3925 . . . . . . . . . . . 12 (𝒫 {𝑀} ⊆ Fin ↔ (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀})
6462, 63mpbi 229 . . . . . . . . . . 11 (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀}
6564, 59eqtri 2765 . . . . . . . . . 10 (𝒫 {𝑀} ∩ Fin) = {∅, {𝑀}}
66 eqid 2737 . . . . . . . . . 10 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))
6765, 66mpteq12i 5209 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)))
6858, 67eqtr4di 2795 . . . . . . . 8 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
6968rneqd 5889 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
70 rnpropg 6170 . . . . . . . 8 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7135, 5, 70syl2anc 584 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7269, 71eqtr3d 2779 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = {0, 𝐵})
7372supeq1d 9315 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ) = sup({0, 𝐵}, ℝ*, < ))
7430simprd 496 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75 xrlenlt 11153 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7628, 31, 75syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7774, 76mpbid 231 . . . . . . . 8 (𝜑 → ¬ 𝐵 < 0)
78 eqidd 2738 . . . . . . . 8 (𝜑𝐵 = 𝐵)
7977, 78jca 512 . . . . . . 7 (𝜑 → (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵))
8079olcd 872 . . . . . 6 (𝜑 → ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
81 eqif 4525 . . . . . 6 (𝐵 = if(𝐵 < 0, 0, 𝐵) ↔ ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
8280, 81sylibr 233 . . . . 5 (𝜑𝐵 = if(𝐵 < 0, 0, 𝐵))
8333, 73, 823eqtr4rd 2788 . . . 4 (𝜑𝐵 = sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ))
843, 5, 24, 83xrge0tsmsd 31693 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
8584unieqd 4877 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
86 unisng 4884 . . 3 (𝐵 ∈ (0[,]+∞) → {𝐵} = 𝐵)
8711, 86syl 17 . 2 (𝜑 {𝐵} = 𝐵)
882, 85, 873eqtrd 2781 1 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wnfc 2885  cin 3907  wss 3908  c0 4280  ifcif 4484  𝒫 cpw 4558  {csn 4584  {cpr 4586  cop 4590   cuni 4863   class class class wbr 5103  cmpt 5186   Or wor 5541  ran crn 5631  cres 5632  wf 6487  (class class class)co 7349  Fincfn 8816  supcsup 9309  0cc0 10984  +∞cpnf 11119  *cxr 11121   < clt 11122  cle 11123  [,]cicc 13195  s cress 17046   Σg cgsu 17256  *𝑠cxrs 17316  Mndcmnd 18490  CMndccmn 19491   tsums ctsu 23399  Σ*cesum 32399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061  ax-pre-sup 11062
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-iin 4955  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-se 5586  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-isom 6500  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7607  df-om 7793  df-1st 7911  df-2nd 7912  df-supp 8060  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-er 8581  df-map 8700  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-fsupp 9239  df-fi 9280  df-sup 9311  df-inf 9312  df-oi 9379  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-div 11746  df-nn 12087  df-2 12149  df-3 12150  df-4 12151  df-5 12152  df-6 12153  df-7 12154  df-8 12155  df-9 12156  df-n0 12347  df-z 12433  df-dec 12551  df-uz 12696  df-q 12802  df-xadd 12962  df-ioo 13196  df-ioc 13197  df-ico 13198  df-icc 13199  df-fz 13353  df-fzo 13496  df-seq 13835  df-hash 14158  df-struct 16953  df-sets 16970  df-slot 16988  df-ndx 17000  df-base 17018  df-ress 17047  df-plusg 17080  df-mulr 17081  df-tset 17086  df-ple 17087  df-ds 17089  df-rest 17238  df-topn 17239  df-0g 17257  df-gsum 17258  df-topgen 17259  df-ordt 17317  df-xrs 17318  df-mre 17400  df-mrc 17401  df-acs 17403  df-ps 18389  df-tsr 18390  df-mgm 18431  df-sgrp 18480  df-mnd 18491  df-submnd 18536  df-mulg 18806  df-cntz 19029  df-cmn 19493  df-fbas 20716  df-fg 20717  df-top 22165  df-topon 22182  df-topsp 22204  df-bases 22218  df-ntr 22293  df-nei 22371  df-cn 22500  df-haus 22588  df-fil 23119  df-fm 23211  df-flim 23212  df-flf 23213  df-tsms 23400  df-esum 32400
This theorem is referenced by:  esumsn  32437  esum2dlem  32464
  Copyright terms: Public domain W3C validator