Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   GIF version

Theorem esumsnf 31433
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0 𝑘𝐵
esumsnf.1 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
esumsnf.2 (𝜑𝑀𝑉)
esumsnf.3 (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsnf (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem esumsnf
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 31397 . . 3 Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴))
21a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)))
3 eqid 2798 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
4 snfi 8577 . . . . 5 {𝑀} ∈ Fin
54a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
6 elsni 4542 . . . . . . . . 9 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
7 esumsnf.1 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
86, 7sylan2 595 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐵)
98mpteq2dva 5125 . . . . . . 7 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐵))
10 esumsnf.2 . . . . . . . 8 (𝜑𝑀𝑉)
11 esumsnf.3 . . . . . . . 8 (𝜑𝐵 ∈ (0[,]+∞))
12 fmptsn 6906 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑙 ∈ {𝑀} ↦ 𝐵))
13 nfcv 2955 . . . . . . . . . 10 𝑙𝐵
14 esumsnf.0 . . . . . . . . . 10 𝑘𝐵
15 eqidd 2799 . . . . . . . . . 10 (𝑘 = 𝑙𝐵 = 𝐵)
1613, 14, 15cbvmpt 5131 . . . . . . . . 9 (𝑘 ∈ {𝑀} ↦ 𝐵) = (𝑙 ∈ {𝑀} ↦ 𝐵)
1712, 16eqtr4di 2851 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
1810, 11, 17syl2anc 587 . . . . . . 7 (𝜑 → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
199, 18eqtr4d 2836 . . . . . 6 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩})
20 fsng 6876 . . . . . . 7 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2110, 11, 20syl2anc 587 . . . . . 6 (𝜑 → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2219, 21mpbird 260 . . . . 5 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵})
2311snssd 4702 . . . . 5 (𝜑 → {𝐵} ⊆ (0[,]+∞))
2422, 23fssd 6502 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶(0[,]+∞))
25 xrltso 12522 . . . . . . 7 < Or ℝ*
2625a1i 11 . . . . . 6 (𝜑 → < Or ℝ*)
27 0xr 10677 . . . . . . 7 0 ∈ ℝ*
2827a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
29 elxrge0 12835 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3011, 29sylib 221 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3130simpld 498 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
32 suppr 8919 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
3326, 28, 31, 32syl3anc 1368 . . . . 5 (𝜑 → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
34 0fin 8730 . . . . . . . . . . 11 ∅ ∈ Fin
3534a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Fin)
36 reseq2 5813 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅))
37 res0 5822 . . . . . . . . . . . . . 14 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅) = ∅
3836, 37eqtrdi 2849 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ∅)
3938oveq2d 7151 . . . . . . . . . . . 12 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
40 xrge00 30720 . . . . . . . . . . . . 13 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4140gsum0 17886 . . . . . . . . . . . 12 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
4239, 41eqtrdi 2849 . . . . . . . . . . 11 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
4342adantl 485 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
44 reseq2 5813 . . . . . . . . . . . . 13 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}))
45 ssid 3937 . . . . . . . . . . . . . 14 {𝑀} ⊆ {𝑀}
46 resmpt 5872 . . . . . . . . . . . . . 14 ({𝑀} ⊆ {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4745, 46ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴)
4844, 47eqtrdi 2849 . . . . . . . . . . . 12 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4948oveq2d 7151 . . . . . . . . . . 11 (𝑥 = {𝑀} → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
50 xrge0base 30719 . . . . . . . . . . . 12 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
51 xrge0cmn 20133 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
52 cmnmnd 18914 . . . . . . . . . . . . . 14 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
55 nfv 1915 . . . . . . . . . . . 12 𝑘𝜑
5650, 54, 10, 11, 7, 55, 14gsumsnfd 19064 . . . . . . . . . . 11 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐵)
5749, 56sylan9eqr 2855 . . . . . . . . . 10 ((𝜑𝑥 = {𝑀}) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 𝐵)
5835, 5, 28, 11, 43, 57fmptpr 6911 . . . . . . . . 9 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
59 pwsn 4792 . . . . . . . . . . . . 13 𝒫 {𝑀} = {∅, {𝑀}}
60 prssi 4714 . . . . . . . . . . . . . 14 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → {∅, {𝑀}} ⊆ Fin)
6134, 4, 60mp2an 691 . . . . . . . . . . . . 13 {∅, {𝑀}} ⊆ Fin
6259, 61eqsstri 3949 . . . . . . . . . . . 12 𝒫 {𝑀} ⊆ Fin
63 df-ss 3898 . . . . . . . . . . . 12 (𝒫 {𝑀} ⊆ Fin ↔ (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀})
6462, 63mpbi 233 . . . . . . . . . . 11 (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀}
6564, 59eqtri 2821 . . . . . . . . . 10 (𝒫 {𝑀} ∩ Fin) = {∅, {𝑀}}
66 eqid 2798 . . . . . . . . . 10 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))
6765, 66mpteq12i 5123 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)))
6858, 67eqtr4di 2851 . . . . . . . 8 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
6968rneqd 5772 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
70 rnpropg 6046 . . . . . . . 8 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7135, 5, 70syl2anc 587 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7269, 71eqtr3d 2835 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = {0, 𝐵})
7372supeq1d 8894 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ) = sup({0, 𝐵}, ℝ*, < ))
7430simprd 499 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75 xrlenlt 10695 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7628, 31, 75syl2anc 587 . . . . . . . . 9 (𝜑 → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7774, 76mpbid 235 . . . . . . . 8 (𝜑 → ¬ 𝐵 < 0)
78 eqidd 2799 . . . . . . . 8 (𝜑𝐵 = 𝐵)
7977, 78jca 515 . . . . . . 7 (𝜑 → (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵))
8079olcd 871 . . . . . 6 (𝜑 → ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
81 eqif 4465 . . . . . 6 (𝐵 = if(𝐵 < 0, 0, 𝐵) ↔ ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
8280, 81sylibr 237 . . . . 5 (𝜑𝐵 = if(𝐵 < 0, 0, 𝐵))
8333, 73, 823eqtr4rd 2844 . . . 4 (𝜑𝐵 = sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ))
843, 5, 24, 83xrge0tsmsd 30742 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
8584unieqd 4814 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
86 unisng 4819 . . 3 (𝐵 ∈ (0[,]+∞) → {𝐵} = 𝐵)
8711, 86syl 17 . 2 (𝜑 {𝐵} = 𝐵)
882, 85, 873eqtrd 2837 1 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wnfc 2936  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525  {cpr 4527  cop 4531   cuni 4800   class class class wbr 5030  cmpt 5110   Or wor 5437  ran crn 5520  cres 5521  wf 6320  (class class class)co 7135  Fincfn 8492  supcsup 8888  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  [,]cicc 12729  s cress 16476   Σg cgsu 16706  *𝑠cxrs 16765  Mndcmnd 17903  CMndccmn 18898   tsums ctsu 22731  Σ*cesum 31396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-xadd 12496  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-tset 16576  df-ple 16577  df-ds 16579  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-ordt 16766  df-xrs 16767  df-mre 16849  df-mrc 16850  df-acs 16852  df-ps 17802  df-tsr 17803  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-fbas 20088  df-fg 20089  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-ntr 21625  df-nei 21703  df-cn 21832  df-haus 21920  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-tsms 22732  df-esum 31397
This theorem is referenced by:  esumsn  31434  esum2dlem  31461
  Copyright terms: Public domain W3C validator