Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumsnf Structured version   Visualization version   GIF version

Theorem esumsnf 34048
Description: The extended sum of a singleton is the term. (Contributed by Thierry Arnoux, 2-Jan-2017.) (Revised by Thierry Arnoux, 2-May-2020.)
Hypotheses
Ref Expression
esumsnf.0 𝑘𝐵
esumsnf.1 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
esumsnf.2 (𝜑𝑀𝑉)
esumsnf.3 (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumsnf (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)   𝑉(𝑘)

Proof of Theorem esumsnf
Dummy variables 𝑥 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-esum 34012 . . 3 Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴))
21a1i 11 . 2 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)))
3 eqid 2729 . . . 4 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
4 snfi 8991 . . . . 5 {𝑀} ∈ Fin
54a1i 11 . . . 4 (𝜑 → {𝑀} ∈ Fin)
6 elsni 4602 . . . . . . . . 9 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
7 esumsnf.1 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝐴 = 𝐵)
86, 7sylan2 593 . . . . . . . 8 ((𝜑𝑘 ∈ {𝑀}) → 𝐴 = 𝐵)
98mpteq2dva 5195 . . . . . . 7 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = (𝑘 ∈ {𝑀} ↦ 𝐵))
10 esumsnf.2 . . . . . . . 8 (𝜑𝑀𝑉)
11 esumsnf.3 . . . . . . . 8 (𝜑𝐵 ∈ (0[,]+∞))
12 fmptsn 7123 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑙 ∈ {𝑀} ↦ 𝐵))
13 nfcv 2891 . . . . . . . . . 10 𝑙𝐵
14 esumsnf.0 . . . . . . . . . 10 𝑘𝐵
15 eqidd 2730 . . . . . . . . . 10 (𝑘 = 𝑙𝐵 = 𝐵)
1613, 14, 15cbvmpt 5204 . . . . . . . . 9 (𝑘 ∈ {𝑀} ↦ 𝐵) = (𝑙 ∈ {𝑀} ↦ 𝐵)
1712, 16eqtr4di 2782 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
1810, 11, 17syl2anc 584 . . . . . . 7 (𝜑 → {⟨𝑀, 𝐵⟩} = (𝑘 ∈ {𝑀} ↦ 𝐵))
199, 18eqtr4d 2767 . . . . . 6 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩})
20 fsng 7091 . . . . . . 7 ((𝑀𝑉𝐵 ∈ (0[,]+∞)) → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2110, 11, 20syl2anc 584 . . . . . 6 (𝜑 → ((𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵} ↔ (𝑘 ∈ {𝑀} ↦ 𝐴) = {⟨𝑀, 𝐵⟩}))
2219, 21mpbird 257 . . . . 5 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶{𝐵})
2311snssd 4769 . . . . 5 (𝜑 → {𝐵} ⊆ (0[,]+∞))
2422, 23fssd 6687 . . . 4 (𝜑 → (𝑘 ∈ {𝑀} ↦ 𝐴):{𝑀}⟶(0[,]+∞))
25 xrltso 13079 . . . . . . 7 < Or ℝ*
2625a1i 11 . . . . . 6 (𝜑 → < Or ℝ*)
27 0xr 11199 . . . . . . 7 0 ∈ ℝ*
2827a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
29 elxrge0 13396 . . . . . . . 8 (𝐵 ∈ (0[,]+∞) ↔ (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3011, 29sylib 218 . . . . . . 7 (𝜑 → (𝐵 ∈ ℝ* ∧ 0 ≤ 𝐵))
3130simpld 494 . . . . . 6 (𝜑𝐵 ∈ ℝ*)
32 suppr 9399 . . . . . 6 (( < Or ℝ* ∧ 0 ∈ ℝ*𝐵 ∈ ℝ*) → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
3326, 28, 31, 32syl3anc 1373 . . . . 5 (𝜑 → sup({0, 𝐵}, ℝ*, < ) = if(𝐵 < 0, 0, 𝐵))
34 0fi 8990 . . . . . . . . . . 11 ∅ ∈ Fin
3534a1i 11 . . . . . . . . . 10 (𝜑 → ∅ ∈ Fin)
36 reseq2 5934 . . . . . . . . . . . . . 14 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅))
37 res0 5943 . . . . . . . . . . . . . 14 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ ∅) = ∅
3836, 37eqtrdi 2780 . . . . . . . . . . . . 13 (𝑥 = ∅ → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ∅)
3938oveq2d 7385 . . . . . . . . . . . 12 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ∅))
40 xrge00 32999 . . . . . . . . . . . . 13 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
4140gsum0 18594 . . . . . . . . . . . 12 ((ℝ*𝑠s (0[,]+∞)) Σg ∅) = 0
4239, 41eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = ∅ → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
4342adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 0)
44 reseq2 5934 . . . . . . . . . . . . 13 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}))
45 ssid 3966 . . . . . . . . . . . . . 14 {𝑀} ⊆ {𝑀}
46 resmpt 5997 . . . . . . . . . . . . . 14 ({𝑀} ⊆ {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4745, 46ax-mp 5 . . . . . . . . . . . . 13 ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝐴)
4844, 47eqtrdi 2780 . . . . . . . . . . . 12 (𝑥 = {𝑀} → ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥) = (𝑘 ∈ {𝑀} ↦ 𝐴))
4948oveq2d 7385 . . . . . . . . . . 11 (𝑥 = {𝑀} → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)))
50 xrge0base 17547 . . . . . . . . . . . 12 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
51 xrge0cmn 21387 . . . . . . . . . . . . . 14 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
52 cmnmnd 19712 . . . . . . . . . . . . . 14 ((ℝ*𝑠s (0[,]+∞)) ∈ CMnd → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
5351, 52ax-mp 5 . . . . . . . . . . . . 13 (ℝ*𝑠s (0[,]+∞)) ∈ Mnd
5453a1i 11 . . . . . . . . . . . 12 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ Mnd)
55 nfv 1914 . . . . . . . . . . . 12 𝑘𝜑
5650, 54, 10, 11, 7, 55, 14gsumsnfd 19866 . . . . . . . . . . 11 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ {𝑀} ↦ 𝐴)) = 𝐵)
5749, 56sylan9eqr 2786 . . . . . . . . . 10 ((𝜑𝑥 = {𝑀}) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = 𝐵)
5835, 5, 28, 11, 43, 57fmptpr 7128 . . . . . . . . 9 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
59 pwsn 4860 . . . . . . . . . . . . 13 𝒫 {𝑀} = {∅, {𝑀}}
60 prssi 4781 . . . . . . . . . . . . . 14 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → {∅, {𝑀}} ⊆ Fin)
6134, 4, 60mp2an 692 . . . . . . . . . . . . 13 {∅, {𝑀}} ⊆ Fin
6259, 61eqsstri 3990 . . . . . . . . . . . 12 𝒫 {𝑀} ⊆ Fin
63 dfss2 3929 . . . . . . . . . . . 12 (𝒫 {𝑀} ⊆ Fin ↔ (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀})
6462, 63mpbi 230 . . . . . . . . . . 11 (𝒫 {𝑀} ∩ Fin) = 𝒫 {𝑀}
6564, 59eqtri 2752 . . . . . . . . . 10 (𝒫 {𝑀} ∩ Fin) = {∅, {𝑀}}
66 eqid 2729 . . . . . . . . . 10 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)) = ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))
6765, 66mpteq12i 5199 . . . . . . . . 9 (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = (𝑥 ∈ {∅, {𝑀}} ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥)))
6858, 67eqtr4di 2782 . . . . . . . 8 (𝜑 → {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
6968rneqd 5891 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))))
70 rnpropg 6183 . . . . . . . 8 ((∅ ∈ Fin ∧ {𝑀} ∈ Fin) → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7135, 5, 70syl2anc 584 . . . . . . 7 (𝜑 → ran {⟨∅, 0⟩, ⟨{𝑀}, 𝐵⟩} = {0, 𝐵})
7269, 71eqtr3d 2766 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))) = {0, 𝐵})
7372supeq1d 9373 . . . . 5 (𝜑 → sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ) = sup({0, 𝐵}, ℝ*, < ))
7430simprd 495 . . . . . . . . 9 (𝜑 → 0 ≤ 𝐵)
75 xrlenlt 11217 . . . . . . . . . 10 ((0 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7628, 31, 75syl2anc 584 . . . . . . . . 9 (𝜑 → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
7774, 76mpbid 232 . . . . . . . 8 (𝜑 → ¬ 𝐵 < 0)
78 eqidd 2730 . . . . . . . 8 (𝜑𝐵 = 𝐵)
7977, 78jca 511 . . . . . . 7 (𝜑 → (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵))
8079olcd 874 . . . . . 6 (𝜑 → ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
81 eqif 4526 . . . . . 6 (𝐵 = if(𝐵 < 0, 0, 𝐵) ↔ ((𝐵 < 0 ∧ 𝐵 = 0) ∨ (¬ 𝐵 < 0 ∧ 𝐵 = 𝐵)))
8280, 81sylibr 234 . . . . 5 (𝜑𝐵 = if(𝐵 < 0, 0, 𝐵))
8333, 73, 823eqtr4rd 2775 . . . 4 (𝜑𝐵 = sup(ran (𝑥 ∈ (𝒫 {𝑀} ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘 ∈ {𝑀} ↦ 𝐴) ↾ 𝑥))), ℝ*, < ))
843, 5, 24, 83xrge0tsmsd 33046 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
8584unieqd 4880 . 2 (𝜑 ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘 ∈ {𝑀} ↦ 𝐴)) = {𝐵})
86 unisng 4885 . . 3 (𝐵 ∈ (0[,]+∞) → {𝐵} = 𝐵)
8711, 86syl 17 . 2 (𝜑 {𝐵} = 𝐵)
882, 85, 873eqtrd 2768 1 (𝜑 → Σ*𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wnfc 2876  cin 3910  wss 3911  c0 4292  ifcif 4484  𝒫 cpw 4559  {csn 4585  {cpr 4587  cop 4591   cuni 4867   class class class wbr 5102  cmpt 5183   Or wor 5538  ran crn 5632  cres 5633  wf 6495  (class class class)co 7369  Fincfn 8895  supcsup 9367  0cc0 11046  +∞cpnf 11183  *cxr 11185   < clt 11186  cle 11187  [,]cicc 13287  s cress 17177   Σg cgsu 17380  *𝑠cxrs 17440  Mndcmnd 18644  CMndccmn 19695   tsums ctsu 24047  Σ*cesum 34011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123  ax-pre-sup 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-div 11814  df-nn 12165  df-2 12227  df-3 12228  df-4 12229  df-5 12230  df-6 12231  df-7 12232  df-8 12233  df-9 12234  df-n0 12421  df-z 12508  df-dec 12628  df-uz 12772  df-q 12886  df-xadd 13051  df-ioo 13288  df-ioc 13289  df-ico 13290  df-icc 13291  df-fz 13447  df-fzo 13594  df-seq 13945  df-hash 14274  df-struct 17094  df-sets 17111  df-slot 17129  df-ndx 17141  df-base 17157  df-ress 17178  df-plusg 17210  df-mulr 17211  df-tset 17216  df-ple 17217  df-ds 17219  df-rest 17362  df-topn 17363  df-0g 17381  df-gsum 17382  df-topgen 17383  df-ordt 17441  df-xrs 17442  df-mre 17524  df-mrc 17525  df-acs 17527  df-ps 18508  df-tsr 18509  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-mulg 18983  df-cntz 19232  df-cmn 19697  df-fbas 21294  df-fg 21295  df-top 22815  df-topon 22832  df-topsp 22854  df-bases 22867  df-ntr 22941  df-nei 23019  df-cn 23148  df-haus 23236  df-fil 23767  df-fm 23859  df-flim 23860  df-flf 23861  df-tsms 24048  df-esum 34012
This theorem is referenced by:  esumsn  34049  esum2dlem  34076
  Copyright terms: Public domain W3C validator