Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpart Structured version   Visualization version   GIF version

Theorem eulerpart 34364
Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from to 0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpart (♯‘𝑂) = (♯‘𝐷)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛   𝐷,𝑔   𝑓,𝑁,𝑔,𝑘,𝑛   𝑔,𝑂,𝑛   𝑃,𝑔,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑘,𝑛)   𝑃(𝑓)   𝑂(𝑓,𝑘)

Proof of Theorem eulerpart
Dummy variables 𝑎 𝑏 𝑚 𝑜 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . 3 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eqid 2735 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 oveq2 7439 . . . 4 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
6 oveq2 7439 . . . . 5 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
76oveq1d 7446 . . . 4 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
85, 7cbvmpov 7528 . . 3 (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 oveq1 7438 . . . . . 6 (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅))
109eleq1d 2824 . . . . 5 (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈ Fin))
1110cbvrabv 3444 . . . 4 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
1211eqcomi 2744 . . 3 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin}
13 fveq1 6906 . . . . . . . 8 (𝑡 = 𝑟 → (𝑡𝑎) = (𝑟𝑎))
1413eleq2d 2825 . . . . . . 7 (𝑡 = 𝑟 → (𝑏 ∈ (𝑡𝑎) ↔ 𝑏 ∈ (𝑟𝑎)))
1514anbi2d 630 . . . . . 6 (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))))
1615opabbidv 5214 . . . . 5 (𝑡 = 𝑟 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
1716cbvmptv 5261 . . . 4 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
18 oveq1 7438 . . . . . . . 8 (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅))
1918eleq1d 2824 . . . . . . 7 (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈ Fin))
2019cbvrabv 3444 . . . . . 6 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin}
2120eqcomi 2744 . . . . 5 {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
22 simpl 482 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑎 = 𝑥)
2322eleq1d 2824 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
24 simpr 484 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 = 𝑦)
2522fveq2d 6911 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑟𝑎) = (𝑟𝑥))
2624, 25eleq12d 2833 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑏 ∈ (𝑟𝑎) ↔ 𝑦 ∈ (𝑟𝑥)))
2723, 26anbi12d 632 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))))
2827cbvopabv 5221 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
2921, 28mpteq12i 5254 . . . 4 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
3017, 29eqtri 2763 . . 3 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
31 cnveq 5887 . . . . . 6 ( = 𝑓 = 𝑓)
3231imaeq1d 6079 . . . . 5 ( = 𝑓 → ( “ ℕ) = (𝑓 “ ℕ))
3332eleq1d 2824 . . . 4 ( = 𝑓 → (( “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
3433cbvabv 2810 . . 3 { ∣ ( “ ℕ) ∈ Fin} = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3532sseq1d 4027 . . . 4 ( = 𝑓 → (( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3635cbvrabv 3444 . . 3 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}}
37 reseq1 5994 . . . . . . . . 9 (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3837coeq2d 5876 . . . . . . . 8 (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
3938fveq2d 6911 . . . . . . 7 (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
4039imaeq2d 6080 . . . . . 6 (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
4140fveq2d 6911 . . . . 5 (𝑜 = 𝑞 → ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
4241cbvmptv 5261 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
438eqcomi 2744 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))
4443imaeq1i 6077 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
45 eqid 2735 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
4611, 45mpteq12i 5254 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
47 fveq1 6906 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → (𝑟𝑎) = (𝑡𝑎))
4847eleq2d 2825 . . . . . . . . . . . . 13 (𝑟 = 𝑡 → (𝑏 ∈ (𝑟𝑎) ↔ 𝑏 ∈ (𝑡𝑎)))
4948anbi2d 630 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))))
5049opabbidv 5214 . . . . . . . . . . 11 (𝑟 = 𝑡 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5150cbvmptv 5261 . . . . . . . . . 10 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5246, 29, 513eqtr2i 2769 . . . . . . . . 9 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5352fveq1i 6908 . . . . . . . 8 ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
5453imaeq2i 6078 . . . . . . 7 ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5544, 54eqtri 2763 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5655fveq2i 6910 . . . . 5 ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
5756mpteq2i 5253 . . . 4 (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
5842, 57eqtri 2763 . . 3 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
59 eqid 2735 . . 3 (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
601, 2, 3, 4, 8, 12, 30, 34, 36, 58, 59eulerpartlemn 34363 . 2 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷
61 ovex 7464 . . . . . . 7 (ℕ0m ℕ) ∈ V
6261rabex 5345 . . . . . 6 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V
6362inex1 5323 . . . . 5 ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ∈ V
6463mptex 7243 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈ V
6564resex 6049 . . 3 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V
66 f1oeq1 6837 . . 3 (𝑔 = ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂1-1-onto𝐷 ↔ ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷))
6765, 66spcev 3606 . 2 (((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷 → ∃𝑔 𝑔:𝑂1-1-onto𝐷)
68 bren 8994 . . 3 (𝑂𝐷 ↔ ∃𝑔 𝑔:𝑂1-1-onto𝐷)
69 hasheni 14384 . . 3 (𝑂𝐷 → (♯‘𝑂) = (♯‘𝐷))
7068, 69sylbir 235 . 2 (∃𝑔 𝑔:𝑂1-1-onto𝐷 → (♯‘𝑂) = (♯‘𝐷))
7160, 67, 70mp2b 10 1 (♯‘𝑂) = (♯‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wral 3059  {crab 3433  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148  {copab 5210  cmpt 5231  ccnv 5688  cres 5691  cima 5692  ccom 5693  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cmpo 7433   supp csupp 8184  m cmap 8865  cen 8981  Fincfn 8984  1c1 11154   · cmul 11158  cle 11294  cn 12264  2c2 12319  0cn0 12524  cexp 14099  chash 14366  Σcsu 15719  cdvds 16287  bitscbits 16453  𝟭cind 33991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-dvds 16288  df-bits 16456  df-ind 33992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator