Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpart Structured version   Visualization version   GIF version

Theorem eulerpart 32982
Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from to 0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpart (♯‘𝑂) = (♯‘𝐷)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛   𝐷,𝑔   𝑓,𝑁,𝑔,𝑘,𝑛   𝑔,𝑂,𝑛   𝑃,𝑔,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑘,𝑛)   𝑃(𝑓)   𝑂(𝑓,𝑘)

Proof of Theorem eulerpart
Dummy variables 𝑎 𝑏 𝑚 𝑜 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . 3 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eqid 2736 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 oveq2 7365 . . . 4 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
6 oveq2 7365 . . . . 5 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
76oveq1d 7372 . . . 4 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
85, 7cbvmpov 7452 . . 3 (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 oveq1 7364 . . . . . 6 (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅))
109eleq1d 2822 . . . . 5 (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈ Fin))
1110cbvrabv 3417 . . . 4 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
1211eqcomi 2745 . . 3 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin}
13 fveq1 6841 . . . . . . . 8 (𝑡 = 𝑟 → (𝑡𝑎) = (𝑟𝑎))
1413eleq2d 2823 . . . . . . 7 (𝑡 = 𝑟 → (𝑏 ∈ (𝑡𝑎) ↔ 𝑏 ∈ (𝑟𝑎)))
1514anbi2d 629 . . . . . 6 (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))))
1615opabbidv 5171 . . . . 5 (𝑡 = 𝑟 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
1716cbvmptv 5218 . . . 4 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
18 oveq1 7364 . . . . . . . 8 (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅))
1918eleq1d 2822 . . . . . . 7 (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈ Fin))
2019cbvrabv 3417 . . . . . 6 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin}
2120eqcomi 2745 . . . . 5 {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
22 simpl 483 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑎 = 𝑥)
2322eleq1d 2822 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
24 simpr 485 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 = 𝑦)
2522fveq2d 6846 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑟𝑎) = (𝑟𝑥))
2624, 25eleq12d 2832 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑏 ∈ (𝑟𝑎) ↔ 𝑦 ∈ (𝑟𝑥)))
2723, 26anbi12d 631 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))))
2827cbvopabv 5178 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
2921, 28mpteq12i 5211 . . . 4 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
3017, 29eqtri 2764 . . 3 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
31 cnveq 5829 . . . . . 6 ( = 𝑓 = 𝑓)
3231imaeq1d 6012 . . . . 5 ( = 𝑓 → ( “ ℕ) = (𝑓 “ ℕ))
3332eleq1d 2822 . . . 4 ( = 𝑓 → (( “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
3433cbvabv 2809 . . 3 { ∣ ( “ ℕ) ∈ Fin} = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3532sseq1d 3975 . . . 4 ( = 𝑓 → (( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3635cbvrabv 3417 . . 3 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}}
37 reseq1 5931 . . . . . . . . 9 (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3837coeq2d 5818 . . . . . . . 8 (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
3938fveq2d 6846 . . . . . . 7 (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
4039imaeq2d 6013 . . . . . 6 (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
4140fveq2d 6846 . . . . 5 (𝑜 = 𝑞 → ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
4241cbvmptv 5218 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
438eqcomi 2745 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))
4443imaeq1i 6010 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
45 eqid 2736 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
4611, 45mpteq12i 5211 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
47 fveq1 6841 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → (𝑟𝑎) = (𝑡𝑎))
4847eleq2d 2823 . . . . . . . . . . . . 13 (𝑟 = 𝑡 → (𝑏 ∈ (𝑟𝑎) ↔ 𝑏 ∈ (𝑡𝑎)))
4948anbi2d 629 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))))
5049opabbidv 5171 . . . . . . . . . . 11 (𝑟 = 𝑡 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5150cbvmptv 5218 . . . . . . . . . 10 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5246, 29, 513eqtr2i 2770 . . . . . . . . 9 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5352fveq1i 6843 . . . . . . . 8 ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
5453imaeq2i 6011 . . . . . . 7 ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5544, 54eqtri 2764 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5655fveq2i 6845 . . . . 5 ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
5756mpteq2i 5210 . . . 4 (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
5842, 57eqtri 2764 . . 3 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
59 eqid 2736 . . 3 (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
601, 2, 3, 4, 8, 12, 30, 34, 36, 58, 59eulerpartlemn 32981 . 2 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷
61 ovex 7390 . . . . . . 7 (ℕ0m ℕ) ∈ V
6261rabex 5289 . . . . . 6 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V
6362inex1 5274 . . . . 5 ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ∈ V
6463mptex 7173 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈ V
6564resex 5985 . . 3 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V
66 f1oeq1 6772 . . 3 (𝑔 = ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂1-1-onto𝐷 ↔ ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷))
6765, 66spcev 3565 . 2 (((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷 → ∃𝑔 𝑔:𝑂1-1-onto𝐷)
68 bren 8893 . . 3 (𝑂𝐷 ↔ ∃𝑔 𝑔:𝑂1-1-onto𝐷)
69 hasheni 14248 . . 3 (𝑂𝐷 → (♯‘𝑂) = (♯‘𝐷))
7068, 69sylbir 234 . 2 (∃𝑔 𝑔:𝑂1-1-onto𝐷 → (♯‘𝑂) = (♯‘𝐷))
7160, 67, 70mp2b 10 1 (♯‘𝑂) = (♯‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  {crab 3407  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   class class class wbr 5105  {copab 5167  cmpt 5188  ccnv 5632  cres 5635  cima 5636  ccom 5637  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  cmpo 7359   supp csupp 8092  m cmap 8765  cen 8880  Fincfn 8883  1c1 11052   · cmul 11056  cle 11190  cn 12153  2c2 12208  0cn0 12413  cexp 13967  chash 14230  Σcsu 15570  cdvds 16136  bitscbits 16299  𝟭cind 32609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-xnn0 12486  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-dvds 16137  df-bits 16302  df-ind 32610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator