Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpart Structured version   Visualization version   GIF version

Theorem eulerpart 31282
Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from to 0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpart (♯‘𝑂) = (♯‘𝐷)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛   𝐷,𝑔   𝑓,𝑁,𝑔,𝑘,𝑛   𝑔,𝑂,𝑛   𝑃,𝑔,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑘,𝑛)   𝑃(𝑓)   𝑂(𝑓,𝑘)

Proof of Theorem eulerpart
Dummy variables 𝑎 𝑏 𝑚 𝑜 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . 3 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eqid 2779 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 oveq2 6984 . . . 4 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
6 oveq2 6984 . . . . 5 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
76oveq1d 6991 . . . 4 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
85, 7cbvmpov 7065 . . 3 (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 oveq1 6983 . . . . . 6 (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅))
109eleq1d 2851 . . . . 5 (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈ Fin))
1110cbvrabv 3413 . . . 4 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
1211eqcomi 2788 . . 3 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin}
13 fveq1 6498 . . . . . . . 8 (𝑡 = 𝑟 → (𝑡𝑎) = (𝑟𝑎))
1413eleq2d 2852 . . . . . . 7 (𝑡 = 𝑟 → (𝑏 ∈ (𝑡𝑎) ↔ 𝑏 ∈ (𝑟𝑎)))
1514anbi2d 619 . . . . . 6 (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))))
1615opabbidv 4995 . . . . 5 (𝑡 = 𝑟 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
1716cbvmptv 5028 . . . 4 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
18 oveq1 6983 . . . . . . . 8 (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅))
1918eleq1d 2851 . . . . . . 7 (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈ Fin))
2019cbvrabv 3413 . . . . . 6 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin}
2120eqcomi 2788 . . . . 5 {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
22 simpl 475 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑎 = 𝑥)
2322eleq1d 2851 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
24 simpr 477 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 = 𝑦)
2522fveq2d 6503 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑟𝑎) = (𝑟𝑥))
2624, 25eleq12d 2861 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑏 ∈ (𝑟𝑎) ↔ 𝑦 ∈ (𝑟𝑥)))
2723, 26anbi12d 621 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))))
2827cbvopabv 5001 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
2921, 28mpteq12i 5020 . . . 4 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
3017, 29eqtri 2803 . . 3 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
31 cnveq 5594 . . . . . 6 ( = 𝑓 = 𝑓)
3231imaeq1d 5769 . . . . 5 ( = 𝑓 → ( “ ℕ) = (𝑓 “ ℕ))
3332eleq1d 2851 . . . 4 ( = 𝑓 → (( “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
3433cbvabv 2911 . . 3 { ∣ ( “ ℕ) ∈ Fin} = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3532sseq1d 3889 . . . 4 ( = 𝑓 → (( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3635cbvrabv 3413 . . 3 { ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0𝑚 ℕ) ∣ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}}
37 reseq1 5689 . . . . . . . . 9 (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3837coeq2d 5583 . . . . . . . 8 (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
3938fveq2d 6503 . . . . . . 7 (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
4039imaeq2d 5770 . . . . . 6 (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
4140fveq2d 6503 . . . . 5 (𝑜 = 𝑞 → ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
4241cbvmptv 5028 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
438eqcomi 2788 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))
4443imaeq1i 5767 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
45 eqid 2779 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
4611, 45mpteq12i 5020 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
47 fveq1 6498 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → (𝑟𝑎) = (𝑡𝑎))
4847eleq2d 2852 . . . . . . . . . . . . 13 (𝑟 = 𝑡 → (𝑏 ∈ (𝑟𝑎) ↔ 𝑏 ∈ (𝑡𝑎)))
4948anbi2d 619 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))))
5049opabbidv 4995 . . . . . . . . . . 11 (𝑟 = 𝑡 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5150cbvmptv 5028 . . . . . . . . . 10 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5246, 29, 513eqtr2i 2809 . . . . . . . . 9 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5352fveq1i 6500 . . . . . . . 8 ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
5453imaeq2i 5768 . . . . . . 7 ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5544, 54eqtri 2803 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5655fveq2i 6502 . . . . 5 ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
5756mpteq2i 5019 . . . 4 (𝑞 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
5842, 57eqtri 2803 . . 3 (𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
59 eqid 2779 . . 3 (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
601, 2, 3, 4, 8, 12, 30, 34, 36, 58, 59eulerpartlemn 31281 . 2 ((𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷
61 ovex 7008 . . . . . . 7 (ℕ0𝑚 ℕ) ∈ V
6261rabex 5091 . . . . . 6 { ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V
6362inex1 5078 . . . . 5 ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ∈ V
6463mptex 6812 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈ V
6564resex 5744 . . 3 ((𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V
66 f1oeq1 6433 . . 3 (𝑔 = ((𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂1-1-onto𝐷 ↔ ((𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷))
6765, 66spcev 3526 . 2 (((𝑜 ∈ ({ ∈ (ℕ0𝑚 ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑𝑚 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷 → ∃𝑔 𝑔:𝑂1-1-onto𝐷)
68 bren 8315 . . 3 (𝑂𝐷 ↔ ∃𝑔 𝑔:𝑂1-1-onto𝐷)
69 hasheni 13523 . . 3 (𝑂𝐷 → (♯‘𝑂) = (♯‘𝐷))
7068, 69sylbir 227 . 2 (∃𝑔 𝑔:𝑂1-1-onto𝐷 → (♯‘𝑂) = (♯‘𝐷))
7160, 67, 70mp2b 10 1 (♯‘𝑂) = (♯‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 387   = wceq 1507  wex 1742  wcel 2050  {cab 2759  wral 3089  {crab 3093  cin 3829  wss 3830  c0 4179  𝒫 cpw 4422   class class class wbr 4929  {copab 4991  cmpt 5008  ccnv 5406  cres 5409  cima 5410  ccom 5411  1-1-ontowf1o 6187  cfv 6188  (class class class)co 6976  cmpo 6978   supp csupp 7633  𝑚 cmap 8206  cen 8303  Fincfn 8306  1c1 10336   · cmul 10340  cle 10475  cn 11439  2c2 11495  0cn0 11707  cexp 13244  chash 13505  Σcsu 14903  cdvds 15467  bitscbits 15628  𝟭cind 30910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-ac2 9683  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-pss 3846  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-disj 4898  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-sup 8701  df-inf 8702  df-oi 8769  df-dju 9124  df-card 9162  df-acn 9165  df-ac 9336  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-rp 12205  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-hash 13506  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-clim 14706  df-sum 14904  df-dvds 15468  df-bits 15631  df-ind 30911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator