| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eulerpart.p | . . 3
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} | 
| 2 |  | eulerpart.o | . . 3
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} | 
| 3 |  | eulerpart.d | . . 3
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} | 
| 4 |  | eqid 2737 | . . 3
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} | 
| 5 |  | oveq2 7439 | . . . 4
⊢ (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥)) | 
| 6 |  | oveq2 7439 | . . . . 5
⊢ (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦)) | 
| 7 | 6 | oveq1d 7446 | . . . 4
⊢ (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥)) | 
| 8 | 5, 7 | cbvmpov 7528 | . . 3
⊢ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) | 
| 9 |  | oveq1 7438 | . . . . . 6
⊢ (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅)) | 
| 10 | 9 | eleq1d 2826 | . . . . 5
⊢ (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈
Fin)) | 
| 11 | 10 | cbvrabv 3447 | . . . 4
⊢ {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} | 
| 12 | 11 | eqcomi 2746 | . . 3
⊢ {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} | 
| 13 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑡 = 𝑟 → (𝑡‘𝑎) = (𝑟‘𝑎)) | 
| 14 | 13 | eleq2d 2827 | . . . . . . 7
⊢ (𝑡 = 𝑟 → (𝑏 ∈ (𝑡‘𝑎) ↔ 𝑏 ∈ (𝑟‘𝑎))) | 
| 15 | 14 | anbi2d 630 | . . . . . 6
⊢ (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)))) | 
| 16 | 15 | opabbidv 5209 | . . . . 5
⊢ (𝑡 = 𝑟 → {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) | 
| 17 | 16 | cbvmptv 5255 | . . . 4
⊢ (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) | 
| 18 |  | oveq1 7438 | . . . . . . . 8
⊢ (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅)) | 
| 19 | 18 | eleq1d 2826 | . . . . . . 7
⊢ (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈
Fin)) | 
| 20 | 19 | cbvrabv 3447 | . . . . . 6
⊢ {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} | 
| 21 | 20 | eqcomi 2746 | . . . . 5
⊢ {𝑠 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} | 
| 22 |  | simpl 482 | . . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 𝑎 = 𝑥) | 
| 23 | 22 | eleq1d 2826 | . . . . . . 7
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) | 
| 24 |  | simpr 484 | . . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 𝑏 = 𝑦) | 
| 25 | 22 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑟‘𝑎) = (𝑟‘𝑥)) | 
| 26 | 24, 25 | eleq12d 2835 | . . . . . . 7
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑏 ∈ (𝑟‘𝑎) ↔ 𝑦 ∈ (𝑟‘𝑥))) | 
| 27 | 23, 26 | anbi12d 632 | . . . . . 6
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥)))) | 
| 28 | 27 | cbvopabv 5216 | . . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} | 
| 29 | 21, 28 | mpteq12i 5248 | . . . 4
⊢ (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) | 
| 30 | 17, 29 | eqtri 2765 | . . 3
⊢ (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) | 
| 31 |  | cnveq 5884 | . . . . . 6
⊢ (ℎ = 𝑓 → ◡ℎ = ◡𝑓) | 
| 32 | 31 | imaeq1d 6077 | . . . . 5
⊢ (ℎ = 𝑓 → (◡ℎ “ ℕ) = (◡𝑓 “ ℕ)) | 
| 33 | 32 | eleq1d 2826 | . . . 4
⊢ (ℎ = 𝑓 → ((◡ℎ “ ℕ) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈
Fin)) | 
| 34 | 33 | cbvabv 2812 | . . 3
⊢ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin} = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} | 
| 35 | 32 | sseq1d 4015 | . . . 4
⊢ (ℎ = 𝑓 → ((◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (◡𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) | 
| 36 | 35 | cbvrabv 3447 | . . 3
⊢ {ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} | 
| 37 |  | reseq1 5991 | . . . . . . . . 9
⊢ (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) | 
| 38 | 37 | coeq2d 5873 | . . . . . . . 8
⊢ (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) | 
| 39 | 38 | fveq2d 6910 | . . . . . . 7
⊢ (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) | 
| 40 | 39 | imaeq2d 6078 | . . . . . 6
⊢ (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) | 
| 41 | 40 | fveq2d 6910 | . . . . 5
⊢ (𝑜 = 𝑞 →
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) =
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) | 
| 42 | 41 | cbvmptv 5255 | . . . 4
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) | 
| 43 | 8 | eqcomi 2746 | . . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) | 
| 44 | 43 | imaeq1i 6075 | . . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) | 
| 45 |  | eqid 2737 | . . . . . . . . . . 11
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} | 
| 46 | 11, 45 | mpteq12i 5248 | . . . . . . . . . 10
⊢ (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) | 
| 47 |  | fveq1 6905 | . . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑡 → (𝑟‘𝑎) = (𝑡‘𝑎)) | 
| 48 | 47 | eleq2d 2827 | . . . . . . . . . . . . 13
⊢ (𝑟 = 𝑡 → (𝑏 ∈ (𝑟‘𝑎) ↔ 𝑏 ∈ (𝑡‘𝑎))) | 
| 49 | 48 | anbi2d 630 | . . . . . . . . . . . 12
⊢ (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎)))) | 
| 50 | 49 | opabbidv 5209 | . . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) | 
| 51 | 50 | cbvmptv 5255 | . . . . . . . . . 10
⊢ (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) | 
| 52 | 46, 29, 51 | 3eqtr2i 2771 | . . . . . . . . 9
⊢ (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) | 
| 53 | 52 | fveq1i 6907 | . . . . . . . 8
⊢ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) | 
| 54 | 53 | imaeq2i 6076 | . . . . . . 7
⊢ ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) | 
| 55 | 44, 54 | eqtri 2765 | . . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) | 
| 56 | 55 | fveq2i 6909 | . . . . 5
⊢
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) =
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) | 
| 57 | 56 | mpteq2i 5247 | . . . 4
⊢ (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) | 
| 58 | 42, 57 | eqtri 2765 | . . 3
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) | 
| 59 |  | eqid 2737 | . . 3
⊢ (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘)) | 
| 60 | 1, 2, 3, 4, 8, 12,
30, 34, 36, 58, 59 | eulerpartlemn 34383 | . 2
⊢ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷 | 
| 61 |  | ovex 7464 | . . . . . . 7
⊢
(ℕ0 ↑m ℕ) ∈
V | 
| 62 | 61 | rabex 5339 | . . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V | 
| 63 | 62 | inex1 5317 | . . . . 5
⊢ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ∈
V | 
| 64 | 63 | mptex 7243 | . . . 4
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈
V | 
| 65 | 64 | resex 6047 | . . 3
⊢ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V | 
| 66 |  | f1oeq1 6836 | . . 3
⊢ (𝑔 = ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂–1-1-onto→𝐷 ↔ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷)) | 
| 67 | 65, 66 | spcev 3606 | . 2
⊢ (((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷 → ∃𝑔 𝑔:𝑂–1-1-onto→𝐷) | 
| 68 |  | bren 8995 | . . 3
⊢ (𝑂 ≈ 𝐷 ↔ ∃𝑔 𝑔:𝑂–1-1-onto→𝐷) | 
| 69 |  | hasheni 14387 | . . 3
⊢ (𝑂 ≈ 𝐷 → (♯‘𝑂) = (♯‘𝐷)) | 
| 70 | 68, 69 | sylbir 235 | . 2
⊢
(∃𝑔 𝑔:𝑂–1-1-onto→𝐷 → (♯‘𝑂) = (♯‘𝐷)) | 
| 71 | 60, 67, 70 | mp2b 10 | 1
⊢
(♯‘𝑂) =
(♯‘𝐷) |