Step | Hyp | Ref
| Expression |
1 | | eulerpart.p |
. . 3
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
2 | | eulerpart.o |
. . 3
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
3 | | eulerpart.d |
. . 3
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
4 | | eqid 2738 |
. . 3
⊢ {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2
∥ 𝑧} |
5 | | oveq2 7283 |
. . . 4
⊢ (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥)) |
6 | | oveq2 7283 |
. . . . 5
⊢ (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦)) |
7 | 6 | oveq1d 7290 |
. . . 4
⊢ (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥)) |
8 | 5, 7 | cbvmpov 7370 |
. . 3
⊢ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) |
9 | | oveq1 7282 |
. . . . . 6
⊢ (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅)) |
10 | 9 | eleq1d 2823 |
. . . . 5
⊢ (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈
Fin)) |
11 | 10 | cbvrabv 3426 |
. . . 4
⊢ {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} |
12 | 11 | eqcomi 2747 |
. . 3
⊢ {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} |
13 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑡 = 𝑟 → (𝑡‘𝑎) = (𝑟‘𝑎)) |
14 | 13 | eleq2d 2824 |
. . . . . . 7
⊢ (𝑡 = 𝑟 → (𝑏 ∈ (𝑡‘𝑎) ↔ 𝑏 ∈ (𝑟‘𝑎))) |
15 | 14 | anbi2d 629 |
. . . . . 6
⊢ (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)))) |
16 | 15 | opabbidv 5140 |
. . . . 5
⊢ (𝑡 = 𝑟 → {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) |
17 | 16 | cbvmptv 5187 |
. . . 4
⊢ (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) |
18 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅)) |
19 | 18 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈
Fin)) |
20 | 19 | cbvrabv 3426 |
. . . . . 6
⊢ {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} |
21 | 20 | eqcomi 2747 |
. . . . 5
⊢ {𝑠 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫
ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} |
22 | | simpl 483 |
. . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 𝑎 = 𝑥) |
23 | 22 | eleq1d 2823 |
. . . . . . 7
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) |
24 | | simpr 485 |
. . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → 𝑏 = 𝑦) |
25 | 22 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑟‘𝑎) = (𝑟‘𝑥)) |
26 | 24, 25 | eleq12d 2833 |
. . . . . . 7
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → (𝑏 ∈ (𝑟‘𝑎) ↔ 𝑦 ∈ (𝑟‘𝑥))) |
27 | 23, 26 | anbi12d 631 |
. . . . . 6
⊢ ((𝑎 = 𝑥 ∧ 𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥)))) |
28 | 27 | cbvopabv 5147 |
. . . . 5
⊢
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} |
29 | 21, 28 | mpteq12i 5180 |
. . . 4
⊢ (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
30 | 17, 29 | eqtri 2766 |
. . 3
⊢ (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
31 | | cnveq 5782 |
. . . . . 6
⊢ (ℎ = 𝑓 → ◡ℎ = ◡𝑓) |
32 | 31 | imaeq1d 5968 |
. . . . 5
⊢ (ℎ = 𝑓 → (◡ℎ “ ℕ) = (◡𝑓 “ ℕ)) |
33 | 32 | eleq1d 2823 |
. . . 4
⊢ (ℎ = 𝑓 → ((◡ℎ “ ℕ) ∈ Fin ↔ (◡𝑓 “ ℕ) ∈
Fin)) |
34 | 33 | cbvabv 2811 |
. . 3
⊢ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin} = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
35 | 32 | sseq1d 3952 |
. . . 4
⊢ (ℎ = 𝑓 → ((◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (◡𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) |
36 | 35 | cbvrabv 3426 |
. . 3
⊢ {ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} |
37 | | reseq1 5885 |
. . . . . . . . 9
⊢ (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) |
38 | 37 | coeq2d 5771 |
. . . . . . . 8
⊢ (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) |
39 | 38 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) |
40 | 39 | imaeq2d 5969 |
. . . . . 6
⊢ (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) |
41 | 40 | fveq2d 6778 |
. . . . 5
⊢ (𝑜 = 𝑞 →
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) =
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) |
42 | 41 | cbvmptv 5187 |
. . . 4
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) |
43 | 8 | eqcomi 2747 |
. . . . . . . 8
⊢ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) |
44 | 43 | imaeq1i 5966 |
. . . . . . 7
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) |
45 | | eqid 2738 |
. . . . . . . . . . 11
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))} |
46 | 11, 45 | mpteq12i 5180 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) |
47 | | fveq1 6773 |
. . . . . . . . . . . . . 14
⊢ (𝑟 = 𝑡 → (𝑟‘𝑎) = (𝑡‘𝑎)) |
48 | 47 | eleq2d 2824 |
. . . . . . . . . . . . 13
⊢ (𝑟 = 𝑡 → (𝑏 ∈ (𝑟‘𝑎) ↔ 𝑏 ∈ (𝑡‘𝑎))) |
49 | 48 | anbi2d 629 |
. . . . . . . . . . . 12
⊢ (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎)))) |
50 | 49 | opabbidv 5140 |
. . . . . . . . . . 11
⊢ (𝑟 = 𝑡 → {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))} = {〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) |
51 | 50 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟‘𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) |
52 | 46, 29, 51 | 3eqtr2i 2772 |
. . . . . . . . 9
⊢ (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))}) |
53 | 52 | fveq1i 6775 |
. . . . . . . 8
⊢ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) |
54 | 53 | imaeq2i 5967 |
. . . . . . 7
⊢ ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) |
55 | 44, 54 | eqtri 2766 |
. . . . . 6
⊢ ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) |
56 | 55 | fveq2i 6777 |
. . . . 5
⊢
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) =
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) |
57 | 56 | mpteq2i 5179 |
. . . 4
⊢ (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) |
58 | 42, 57 | eqtri 2766 |
. . 3
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦
((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦
{〈𝑎, 𝑏〉 ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡‘𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) |
59 | | eqid 2738 |
. . 3
⊢ (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0
↑m ℕ) ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘)) |
60 | 1, 2, 3, 4, 8, 12,
30, 34, 36, 58, 59 | eulerpartlemn 32348 |
. 2
⊢ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷 |
61 | | ovex 7308 |
. . . . . . 7
⊢
(ℕ0 ↑m ℕ) ∈
V |
62 | 61 | rabex 5256 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V |
63 | 62 | inex1 5241 |
. . . . 5
⊢ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ∈
V |
64 | 63 | mptex 7099 |
. . . 4
⊢ (𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈
V |
65 | 64 | resex 5939 |
. . 3
⊢ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V |
66 | | f1oeq1 6704 |
. . 3
⊢ (𝑔 = ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂–1-1-onto→𝐷 ↔ ((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷)) |
67 | 65, 66 | spcev 3545 |
. 2
⊢ (((𝑜 ∈ ({ℎ ∈ (ℕ0
↑m ℕ) ∣ (◡ℎ “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ {ℎ ∣ (◡ℎ “ ℕ) ∈ Fin}) ↦
((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦
((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩
Fin) ↑m {𝑧
∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟‘𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂–1-1-onto→𝐷 → ∃𝑔 𝑔:𝑂–1-1-onto→𝐷) |
68 | | bren 8743 |
. . 3
⊢ (𝑂 ≈ 𝐷 ↔ ∃𝑔 𝑔:𝑂–1-1-onto→𝐷) |
69 | | hasheni 14062 |
. . 3
⊢ (𝑂 ≈ 𝐷 → (♯‘𝑂) = (♯‘𝐷)) |
70 | 68, 69 | sylbir 234 |
. 2
⊢
(∃𝑔 𝑔:𝑂–1-1-onto→𝐷 → (♯‘𝑂) = (♯‘𝐷)) |
71 | 60, 67, 70 | mp2b 10 |
1
⊢
(♯‘𝑂) =
(♯‘𝐷) |