Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpart Structured version   Visualization version   GIF version

Theorem eulerpart 34385
Description: Euler's theorem on partitions, also known as a special case of Glaisher's theorem. Let 𝑃 be the set of all partitions of 𝑁, represented as multisets of positive integers, which is to say functions from to 0 where the value of the function represents the number of repetitions of an individual element, and the sum of all the elements with repetition equals 𝑁. Then the set 𝑂 of all partitions that only consist of odd numbers and the set 𝐷 of all partitions which have no repeated elements have the same cardinality. This is Metamath 100 proof #45. (Contributed by Thierry Arnoux, 14-Aug-2018.) (Revised by Thierry Arnoux, 1-Sep-2019.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpart (♯‘𝑂) = (♯‘𝐷)
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛   𝐷,𝑔   𝑓,𝑁,𝑔,𝑘,𝑛   𝑔,𝑂,𝑛   𝑃,𝑔,𝑘,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑘,𝑛)   𝑃(𝑓)   𝑂(𝑓,𝑘)

Proof of Theorem eulerpart
Dummy variables 𝑎 𝑏 𝑚 𝑜 𝑞 𝑟 𝑠 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
2 eulerpart.o . . 3 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
3 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
4 eqid 2730 . . 3 {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
5 oveq2 7349 . . . 4 (𝑎 = 𝑥 → ((2↑𝑏) · 𝑎) = ((2↑𝑏) · 𝑥))
6 oveq2 7349 . . . . 5 (𝑏 = 𝑦 → (2↑𝑏) = (2↑𝑦))
76oveq1d 7356 . . . 4 (𝑏 = 𝑦 → ((2↑𝑏) · 𝑥) = ((2↑𝑦) · 𝑥))
85, 7cbvmpov 7436 . . 3 (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) = (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
9 oveq1 7348 . . . . . 6 (𝑟 = 𝑚 → (𝑟 supp ∅) = (𝑚 supp ∅))
109eleq1d 2814 . . . . 5 (𝑟 = 𝑚 → ((𝑟 supp ∅) ∈ Fin ↔ (𝑚 supp ∅) ∈ Fin))
1110cbvrabv 3403 . . . 4 {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
1211eqcomi 2739 . . 3 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin}
13 fveq1 6816 . . . . . . . 8 (𝑡 = 𝑟 → (𝑡𝑎) = (𝑟𝑎))
1413eleq2d 2815 . . . . . . 7 (𝑡 = 𝑟 → (𝑏 ∈ (𝑡𝑎) ↔ 𝑏 ∈ (𝑟𝑎)))
1514anbi2d 630 . . . . . 6 (𝑡 = 𝑟 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))))
1615opabbidv 5155 . . . . 5 (𝑡 = 𝑟 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
1716cbvmptv 5193 . . . 4 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))})
18 oveq1 7348 . . . . . . . 8 (𝑚 = 𝑠 → (𝑚 supp ∅) = (𝑠 supp ∅))
1918eleq1d 2814 . . . . . . 7 (𝑚 = 𝑠 → ((𝑚 supp ∅) ∈ Fin ↔ (𝑠 supp ∅) ∈ Fin))
2019cbvrabv 3403 . . . . . 6 {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} = {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin}
2120eqcomi 2739 . . . . 5 {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} = {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin}
22 simpl 482 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑎 = 𝑥)
2322eleq1d 2814 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ 𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
24 simpr 484 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → 𝑏 = 𝑦)
2522fveq2d 6821 . . . . . . . 8 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑟𝑎) = (𝑟𝑥))
2624, 25eleq12d 2823 . . . . . . 7 ((𝑎 = 𝑥𝑏 = 𝑦) → (𝑏 ∈ (𝑟𝑎) ↔ 𝑦 ∈ (𝑟𝑥)))
2723, 26anbi12d 632 . . . . . 6 ((𝑎 = 𝑥𝑏 = 𝑦) → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))))
2827cbvopabv 5162 . . . . 5 {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
2921, 28mpteq12i 5186 . . . 4 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
3017, 29eqtri 2753 . . 3 (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
31 cnveq 5811 . . . . . 6 ( = 𝑓 = 𝑓)
3231imaeq1d 6005 . . . . 5 ( = 𝑓 → ( “ ℕ) = (𝑓 “ ℕ))
3332eleq1d 2814 . . . 4 ( = 𝑓 → (( “ ℕ) ∈ Fin ↔ (𝑓 “ ℕ) ∈ Fin))
3433cbvabv 2800 . . 3 { ∣ ( “ ℕ) ∈ Fin} = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
3532sseq1d 3964 . . . 4 ( = 𝑓 → (( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ↔ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3635cbvrabv 3403 . . 3 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}}
37 reseq1 5919 . . . . . . . . 9 (𝑜 = 𝑞 → (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) = (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))
3837coeq2d 5800 . . . . . . . 8 (𝑜 = 𝑞 → (bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})) = (bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
3938fveq2d 6821 . . . . . . 7 (𝑜 = 𝑞 → ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
4039imaeq2d 6006 . . . . . 6 (𝑜 = 𝑞 → ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
4140fveq2d 6821 . . . . 5 (𝑜 = 𝑞 → ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
4241cbvmptv 5193 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
438eqcomi 2739 . . . . . . . 8 (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) = (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎))
4443imaeq1i 6003 . . . . . . 7 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
45 eqid 2730 . . . . . . . . . . 11 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}
4611, 45mpteq12i 5186 . . . . . . . . . 10 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑟 ∈ {𝑚 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑚 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})
47 fveq1 6816 . . . . . . . . . . . . . 14 (𝑟 = 𝑡 → (𝑟𝑎) = (𝑡𝑎))
4847eleq2d 2815 . . . . . . . . . . . . 13 (𝑟 = 𝑡 → (𝑏 ∈ (𝑟𝑎) ↔ 𝑏 ∈ (𝑡𝑎)))
4948anbi2d 630 . . . . . . . . . . . 12 (𝑟 = 𝑡 → ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎)) ↔ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))))
5049opabbidv 5155 . . . . . . . . . . 11 (𝑟 = 𝑡 → {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))} = {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5150cbvmptv 5193 . . . . . . . . . 10 (𝑟 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑟𝑎))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5246, 29, 513eqtr2i 2759 . . . . . . . . 9 (𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))}) = (𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})
5352fveq1i 6818 . . . . . . . 8 ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))) = ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))
5453imaeq2i 6004 . . . . . . 7 ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5544, 54eqtri 2753 . . . . . 6 ((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))) = ((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))
5655fveq2i 6820 . . . . 5 ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))) = ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))
5756mpteq2i 5185 . . . 4 (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
5842, 57eqtri 2753 . . 3 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) = (𝑞 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑏 ∈ ℕ0 ↦ ((2↑𝑏) · 𝑎)) “ ((𝑡 ∈ {𝑠 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑠 supp ∅) ∈ Fin} ↦ {⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑏 ∈ (𝑡𝑎))})‘(bits ∘ (𝑞 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}))))))
59 eqid 2730 . . 3 (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘)) = (𝑓 ∈ ((ℕ0m ℕ) ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
601, 2, 3, 4, 8, 12, 30, 34, 36, 58, 59eulerpartlemn 34384 . 2 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷
61 ovex 7374 . . . . . . 7 (ℕ0m ℕ) ∈ V
6261rabex 5275 . . . . . 6 { ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∈ V
6362inex1 5253 . . . . 5 ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ∈ V
6463mptex 7152 . . . 4 (𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ∈ V
6564resex 5975 . . 3 ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) ∈ V
66 f1oeq1 6747 . . 3 (𝑔 = ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂) → (𝑔:𝑂1-1-onto𝐷 ↔ ((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷))
6765, 66spcev 3559 . 2 (((𝑜 ∈ ({ ∈ (ℕ0m ℕ) ∣ ( “ ℕ) ⊆ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}} ∩ { ∣ ( “ ℕ) ∈ Fin}) ↦ ((𝟭‘ℕ)‘((𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥)) “ ((𝑟 ∈ {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}) ∣ (𝑟 supp ∅) ∈ Fin} ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} ∧ 𝑦 ∈ (𝑟𝑥))})‘(bits ∘ (𝑜 ↾ {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧})))))) ↾ 𝑂):𝑂1-1-onto𝐷 → ∃𝑔 𝑔:𝑂1-1-onto𝐷)
68 bren 8874 . . 3 (𝑂𝐷 ↔ ∃𝑔 𝑔:𝑂1-1-onto𝐷)
69 hasheni 14247 . . 3 (𝑂𝐷 → (♯‘𝑂) = (♯‘𝐷))
7068, 69sylbir 235 . 2 (∃𝑔 𝑔:𝑂1-1-onto𝐷 → (♯‘𝑂) = (♯‘𝐷))
7160, 67, 70mp2b 10 1 (♯‘𝑂) = (♯‘𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wex 1780  wcel 2110  {cab 2708  wral 3045  {crab 3393  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548   class class class wbr 5089  {copab 5151  cmpt 5170  ccnv 5613  cres 5616  cima 5617  ccom 5618  1-1-ontowf1o 6476  cfv 6477  (class class class)co 7341  cmpo 7343   supp csupp 8085  m cmap 8745  cen 8861  Fincfn 8864  1c1 10999   · cmul 11003  cle 11139  cn 12117  2c2 12172  0cn0 12373  cexp 13960  chash 14229  Σcsu 15585  cdvds 16155  bitscbits 16322  𝟭cind 32821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9786  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-dvds 16156  df-bits 16325  df-ind 32822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator