![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptrel | Structured version Visualization version GIF version |
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
mptrel | ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5229 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | 1 | relopabiv 5818 | 1 ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5228 Rel wrel 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-ss 3963 df-opab 5208 df-mpt 5229 df-xp 5680 df-rel 5681 |
This theorem is referenced by: fmptco 7135 swrd0 14661 pmtrsn 19513 00lsp 20954 fmptcof2 32574 dfbigcup2 35736 imageval 35767 iscard4 43237 |
Copyright terms: Public domain | W3C validator |