MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrel Structured version   Visualization version   GIF version

Theorem mptrel 5823
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel Rel (𝑥𝐴𝐵)

Proof of Theorem mptrel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5229 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
21relopabiv 5818 1 Rel (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  cmpt 5228  Rel wrel 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-ss 3963  df-opab 5208  df-mpt 5229  df-xp 5680  df-rel 5681
This theorem is referenced by:  fmptco  7135  swrd0  14661  pmtrsn  19513  00lsp  20954  fmptcof2  32574  dfbigcup2  35736  imageval  35767  iscard4  43237
  Copyright terms: Public domain W3C validator