![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptrel | Structured version Visualization version GIF version |
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
mptrel | ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5250 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-mpt 5250 df-xp 5706 df-rel 5707 |
This theorem is referenced by: fmptco 7163 swrd0 14706 pmtrsn 19561 00lsp 21002 fmptcof2 32675 dfbigcup2 35863 imageval 35894 iscard4 43495 |
Copyright terms: Public domain | W3C validator |