MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrel Structured version   Visualization version   GIF version

Theorem mptrel 5724
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel Rel (𝑥𝐴𝐵)

Proof of Theorem mptrel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5154 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
21relopabiv 5719 1 Rel (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  cmpt 5153  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-opab 5133  df-mpt 5154  df-xp 5586  df-rel 5587
This theorem is referenced by:  fmptco  6983  swrd0  14299  pmtrsn  19042  00lsp  20158  fmptcof2  30896  dfbigcup2  34128  imageval  34159  iscard4  41038
  Copyright terms: Public domain W3C validator