MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptrel Structured version   Visualization version   GIF version

Theorem mptrel 5735
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.)
Assertion
Ref Expression
mptrel Rel (𝑥𝐴𝐵)

Proof of Theorem mptrel
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5158 . 2 (𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
21relopabiv 5730 1 Rel (𝑥𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  cmpt 5157  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-opab 5137  df-mpt 5158  df-xp 5595  df-rel 5596
This theorem is referenced by:  fmptco  7001  swrd0  14371  pmtrsn  19127  00lsp  20243  fmptcof2  30994  dfbigcup2  34201  imageval  34232  iscard4  41140
  Copyright terms: Public domain W3C validator