Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptrel | Structured version Visualization version GIF version |
Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.) |
Ref | Expression |
---|---|
mptrel | ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 5154 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-mpt 5154 df-xp 5586 df-rel 5587 |
This theorem is referenced by: fmptco 6983 swrd0 14299 pmtrsn 19042 00lsp 20158 fmptcof2 30896 dfbigcup2 34128 imageval 34159 iscard4 41038 |
Copyright terms: Public domain | W3C validator |