| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mptrel | Structured version Visualization version GIF version | ||
| Description: The maps-to notation always describes a binary relation. (Contributed by Scott Fenton, 16-Apr-2012.) |
| Ref | Expression |
|---|---|
| mptrel | ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpt 5175 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} | |
| 2 | 1 | relopabiv 5764 | 1 ⊢ Rel (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 ↦ cmpt 5174 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-opab 5156 df-mpt 5175 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: fmptco 7068 swrd0 14568 pmtrsn 19433 00lsp 20916 fmptcof2 32641 dfbigcup2 35962 imageval 35993 iscard4 43650 |
| Copyright terms: Public domain | W3C validator |