| Step | Hyp | Ref
| Expression |
| 1 | | snex 5416 |
. . 3
⊢ {𝐴} ∈ V |
| 2 | | eqid 2734 |
. . . 4
⊢
(pmTrsp‘{𝐴}) =
(pmTrsp‘{𝐴}) |
| 3 | 2 | pmtrfval 19436 |
. . 3
⊢ ({𝐴} ∈ V →
(pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
| 4 | 1, 3 | ax-mp 5 |
. 2
⊢
(pmTrsp‘{𝐴}) =
(𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) |
| 5 | | eqid 2734 |
. . . . 5
⊢ (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) |
| 6 | 5 | dmmpt 6240 |
. . . 4
⊢ dom
(𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} |
| 7 | | 2on0 8504 |
. . . . . . . . 9
⊢
2o ≠ ∅ |
| 8 | | ensymb 9024 |
. . . . . . . . . 10
⊢ (∅
≈ 2o ↔ 2o ≈ ∅) |
| 9 | | en0 9040 |
. . . . . . . . . 10
⊢
(2o ≈ ∅ ↔ 2o =
∅) |
| 10 | 8, 9 | bitri 275 |
. . . . . . . . 9
⊢ (∅
≈ 2o ↔ 2o = ∅) |
| 11 | 7, 10 | nemtbir 3027 |
. . . . . . . 8
⊢ ¬
∅ ≈ 2o |
| 12 | | snnen2o 9255 |
. . . . . . . 8
⊢ ¬
{𝐴} ≈
2o |
| 13 | | 0ex 5287 |
. . . . . . . . 9
⊢ ∅
∈ V |
| 14 | | breq1 5126 |
. . . . . . . . . 10
⊢ (𝑦 = ∅ → (𝑦 ≈ 2o ↔
∅ ≈ 2o)) |
| 15 | 14 | notbid 318 |
. . . . . . . . 9
⊢ (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔
¬ ∅ ≈ 2o)) |
| 16 | | breq1 5126 |
. . . . . . . . . 10
⊢ (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈
2o)) |
| 17 | 16 | notbid 318 |
. . . . . . . . 9
⊢ (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈
2o)) |
| 18 | 13, 1, 15, 17 | ralpr 4680 |
. . . . . . . 8
⊢
(∀𝑦 ∈
{∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔
(¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o)) |
| 19 | 11, 12, 18 | mpbir2an 711 |
. . . . . . 7
⊢
∀𝑦 ∈
{∅, {𝐴}} ¬ 𝑦 ≈
2o |
| 20 | | pwsn 4880 |
. . . . . . . 8
⊢ 𝒫
{𝐴} = {∅, {𝐴}} |
| 21 | 20 | raleqi 3307 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔
∀𝑦 ∈ {∅,
{𝐴}} ¬ 𝑦 ≈
2o) |
| 22 | 19, 21 | mpbir 231 |
. . . . . 6
⊢
∀𝑦 ∈
𝒫 {𝐴} ¬ 𝑦 ≈
2o |
| 23 | | rabeq0 4368 |
. . . . . 6
⊢ ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔
∀𝑦 ∈ 𝒫
{𝐴} ¬ 𝑦 ≈
2o) |
| 24 | 22, 23 | mpbir 231 |
. . . . 5
⊢ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} =
∅ |
| 25 | 24 | rabeqi 3433 |
. . . 4
⊢ {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} |
| 26 | | rab0 4366 |
. . . 4
⊢ {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅ |
| 27 | 6, 25, 26 | 3eqtri 2761 |
. . 3
⊢ dom
(𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅ |
| 28 | | mptrel 5815 |
. . . 4
⊢ Rel
(𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) |
| 29 | | reldm0 5918 |
. . . 4
⊢ (Rel
(𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅)) |
| 30 | 28, 29 | ax-mp 5 |
. . 3
⊢ ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅) |
| 31 | 27, 30 | mpbir 231 |
. 2
⊢ (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧))) = ∅ |
| 32 | 4, 31 | eqtri 2757 |
1
⊢
(pmTrsp‘{𝐴}) =
∅ |