MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrsn Structured version   Visualization version   GIF version

Theorem pmtrsn 19425
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
pmtrsn (pmTrsp‘{𝐴}) = ∅

Proof of Theorem pmtrsn
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5386 . . 3 {𝐴} ∈ V
2 eqid 2729 . . . 4 (pmTrsp‘{𝐴}) = (pmTrsp‘{𝐴})
32pmtrfval 19356 . . 3 ({𝐴} ∈ V → (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 eqid 2729 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
65dmmpt 6201 . . . 4 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
7 2on0 8425 . . . . . . . . 9 2o ≠ ∅
8 ensymb 8950 . . . . . . . . . 10 (∅ ≈ 2o ↔ 2o ≈ ∅)
9 en0 8966 . . . . . . . . . 10 (2o ≈ ∅ ↔ 2o = ∅)
108, 9bitri 275 . . . . . . . . 9 (∅ ≈ 2o ↔ 2o = ∅)
117, 10nemtbir 3021 . . . . . . . 8 ¬ ∅ ≈ 2o
12 snnen2o 9161 . . . . . . . 8 ¬ {𝐴} ≈ 2o
13 0ex 5257 . . . . . . . . 9 ∅ ∈ V
14 breq1 5105 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ≈ 2o ↔ ∅ ≈ 2o))
1514notbid 318 . . . . . . . . 9 (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o))
16 breq1 5105 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈ 2o))
1716notbid 318 . . . . . . . . 9 (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈ 2o))
1813, 1, 15, 17ralpr 4660 . . . . . . . 8 (∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔ (¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o))
1911, 12, 18mpbir2an 711 . . . . . . 7 𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o
20 pwsn 4860 . . . . . . . 8 𝒫 {𝐴} = {∅, {𝐴}}
2120raleqi 3294 . . . . . . 7 (∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔ ∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o)
2219, 21mpbir 231 . . . . . 6 𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o
23 rabeq0 4347 . . . . . 6 ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔ ∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o)
2422, 23mpbir 231 . . . . 5 {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅
2524rabeqi 3416 . . . 4 {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
26 rab0 4345 . . . 4 {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅
276, 25, 263eqtri 2756 . . 3 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
28 mptrel 5779 . . . 4 Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
29 reldm0 5881 . . . 4 (Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅))
3028, 29ax-mp 5 . . 3 ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅)
3127, 30mpbir 231 . 2 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
324, 31eqtri 2752 1 (pmTrsp‘{𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  cdif 3908  c0 4292  ifcif 4484  𝒫 cpw 4559  {csn 4585  {cpr 4587   cuni 4867   class class class wbr 5102  cmpt 5183  dom cdm 5631  Rel wrel 5636  cfv 6499  2oc2o 8405  cen 8892  pmTrspcpmtr 19347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-pmtr 19348
This theorem is referenced by:  psgnsn  19426
  Copyright terms: Public domain W3C validator