MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrsn Structured version   Visualization version   GIF version

Theorem pmtrsn 19315
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
pmtrsn (pmTrsp‘{𝐴}) = ∅

Proof of Theorem pmtrsn
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5393 . . 3 {𝐴} ∈ V
2 eqid 2731 . . . 4 (pmTrsp‘{𝐴}) = (pmTrsp‘{𝐴})
32pmtrfval 19246 . . 3 ({𝐴} ∈ V → (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 eqid 2731 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
65dmmpt 6197 . . . 4 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
7 2on0 8433 . . . . . . . . 9 2o ≠ ∅
8 ensymb 8949 . . . . . . . . . 10 (∅ ≈ 2o ↔ 2o ≈ ∅)
9 en0 8964 . . . . . . . . . 10 (2o ≈ ∅ ↔ 2o = ∅)
108, 9bitri 274 . . . . . . . . 9 (∅ ≈ 2o ↔ 2o = ∅)
117, 10nemtbir 3037 . . . . . . . 8 ¬ ∅ ≈ 2o
12 snnen2o 9188 . . . . . . . 8 ¬ {𝐴} ≈ 2o
13 0ex 5269 . . . . . . . . 9 ∅ ∈ V
14 breq1 5113 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ≈ 2o ↔ ∅ ≈ 2o))
1514notbid 317 . . . . . . . . 9 (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o))
16 breq1 5113 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈ 2o))
1716notbid 317 . . . . . . . . 9 (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈ 2o))
1813, 1, 15, 17ralpr 4666 . . . . . . . 8 (∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔ (¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o))
1911, 12, 18mpbir2an 709 . . . . . . 7 𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o
20 pwsn 4862 . . . . . . . 8 𝒫 {𝐴} = {∅, {𝐴}}
2120raleqi 3309 . . . . . . 7 (∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔ ∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o)
2219, 21mpbir 230 . . . . . 6 𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o
23 rabeq0 4349 . . . . . 6 ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔ ∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o)
2422, 23mpbir 230 . . . . 5 {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅
2524rabeqi 3418 . . . 4 {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
26 rab0 4347 . . . 4 {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅
276, 25, 263eqtri 2763 . . 3 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
28 mptrel 5786 . . . 4 Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
29 reldm0 5888 . . . 4 (Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅))
3028, 29ax-mp 5 . . 3 ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅)
3127, 30mpbir 230 . 2 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
324, 31eqtri 2759 1 (pmTrsp‘{𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205   = wceq 1541  wcel 2106  wral 3060  {crab 3405  Vcvv 3446  cdif 3910  c0 4287  ifcif 4491  𝒫 cpw 4565  {csn 4591  {cpr 4593   cuni 4870   class class class wbr 5110  cmpt 5193  dom cdm 5638  Rel wrel 5643  cfv 6501  2oc2o 8411  cen 8887  pmTrspcpmtr 19237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-1o 8417  df-2o 8418  df-er 8655  df-en 8891  df-pmtr 19238
This theorem is referenced by:  psgnsn  19316
  Copyright terms: Public domain W3C validator