MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrsn Structured version   Visualization version   GIF version

Theorem pmtrsn 18630
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
pmtrsn (pmTrsp‘{𝐴}) = ∅

Proof of Theorem pmtrsn
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5318 . . 3 {𝐴} ∈ V
2 eqid 2821 . . . 4 (pmTrsp‘{𝐴}) = (pmTrsp‘{𝐴})
32pmtrfval 18561 . . 3 ({𝐴} ∈ V → (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 eqid 2821 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
65dmmpt 6080 . . . 4 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
7 2on0 8099 . . . . . . . . 9 2o ≠ ∅
8 ensymb 8543 . . . . . . . . . 10 (∅ ≈ 2o ↔ 2o ≈ ∅)
9 en0 8558 . . . . . . . . . 10 (2o ≈ ∅ ↔ 2o = ∅)
108, 9bitri 277 . . . . . . . . 9 (∅ ≈ 2o ↔ 2o = ∅)
117, 10nemtbir 3112 . . . . . . . 8 ¬ ∅ ≈ 2o
12 snnen2o 8693 . . . . . . . 8 ¬ {𝐴} ≈ 2o
13 0ex 5197 . . . . . . . . 9 ∅ ∈ V
14 breq1 5055 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ≈ 2o ↔ ∅ ≈ 2o))
1514notbid 320 . . . . . . . . 9 (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o))
16 breq1 5055 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈ 2o))
1716notbid 320 . . . . . . . . 9 (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈ 2o))
1813, 1, 15, 17ralpr 4622 . . . . . . . 8 (∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔ (¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o))
1911, 12, 18mpbir2an 709 . . . . . . 7 𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o
20 pwsn 4816 . . . . . . . 8 𝒫 {𝐴} = {∅, {𝐴}}
2120raleqi 3409 . . . . . . 7 (∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔ ∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o)
2219, 21mpbir 233 . . . . . 6 𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o
23 rabeq0 4324 . . . . . 6 ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔ ∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o)
2422, 23mpbir 233 . . . . 5 {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅
2524rabeqi 3474 . . . 4 {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
26 rab0 4323 . . . 4 {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅
276, 25, 263eqtri 2848 . . 3 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
28 mptrel 5683 . . . 4 Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
29 reldm0 5784 . . . 4 (Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅))
3028, 29ax-mp 5 . . 3 ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅)
3127, 30mpbir 233 . 2 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
324, 31eqtri 2844 1 (pmTrsp‘{𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3486  cdif 3921  c0 4279  ifcif 4453  𝒫 cpw 4525  {csn 4553  {cpr 4555   cuni 4824   class class class wbr 5052  cmpt 5132  dom cdm 5541  Rel wrel 5546  cfv 6341  2oc2o 8082  cen 8492  pmTrspcpmtr 18552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-om 7567  df-1o 8088  df-2o 8089  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pmtr 18553
This theorem is referenced by:  psgnsn  18631
  Copyright terms: Public domain W3C validator