MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmtrsn Structured version   Visualization version   GIF version

Theorem pmtrsn 19449
Description: The value of the transposition generator function for a singleton is empty, i.e. there is no transposition for a singleton. This also holds for 𝐴 ∉ V, i.e. for the empty set {𝐴} = ∅ resulting in (pmTrsp‘∅) = ∅. (Contributed by AV, 6-Aug-2019.)
Assertion
Ref Expression
pmtrsn (pmTrsp‘{𝐴}) = ∅

Proof of Theorem pmtrsn
Dummy variables 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 5391 . . 3 {𝐴} ∈ V
2 eqid 2729 . . . 4 (pmTrsp‘{𝐴}) = (pmTrsp‘{𝐴})
32pmtrfval 19380 . . 3 ({𝐴} ∈ V → (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
41, 3ax-mp 5 . 2 (pmTrsp‘{𝐴}) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
5 eqid 2729 . . . . 5 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
65dmmpt 6213 . . . 4 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
7 2on0 8448 . . . . . . . . 9 2o ≠ ∅
8 ensymb 8973 . . . . . . . . . 10 (∅ ≈ 2o ↔ 2o ≈ ∅)
9 en0 8989 . . . . . . . . . 10 (2o ≈ ∅ ↔ 2o = ∅)
108, 9bitri 275 . . . . . . . . 9 (∅ ≈ 2o ↔ 2o = ∅)
117, 10nemtbir 3021 . . . . . . . 8 ¬ ∅ ≈ 2o
12 snnen2o 9184 . . . . . . . 8 ¬ {𝐴} ≈ 2o
13 0ex 5262 . . . . . . . . 9 ∅ ∈ V
14 breq1 5110 . . . . . . . . . 10 (𝑦 = ∅ → (𝑦 ≈ 2o ↔ ∅ ≈ 2o))
1514notbid 318 . . . . . . . . 9 (𝑦 = ∅ → (¬ 𝑦 ≈ 2o ↔ ¬ ∅ ≈ 2o))
16 breq1 5110 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ≈ 2o ↔ {𝐴} ≈ 2o))
1716notbid 318 . . . . . . . . 9 (𝑦 = {𝐴} → (¬ 𝑦 ≈ 2o ↔ ¬ {𝐴} ≈ 2o))
1813, 1, 15, 17ralpr 4664 . . . . . . . 8 (∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o ↔ (¬ ∅ ≈ 2o ∧ ¬ {𝐴} ≈ 2o))
1911, 12, 18mpbir2an 711 . . . . . . 7 𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o
20 pwsn 4864 . . . . . . . 8 𝒫 {𝐴} = {∅, {𝐴}}
2120raleqi 3297 . . . . . . 7 (∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o ↔ ∀𝑦 ∈ {∅, {𝐴}} ¬ 𝑦 ≈ 2o)
2219, 21mpbir 231 . . . . . 6 𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o
23 rabeq0 4351 . . . . . 6 ({𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅ ↔ ∀𝑦 ∈ 𝒫 {𝐴} ¬ 𝑦 ≈ 2o)
2422, 23mpbir 231 . . . . 5 {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} = ∅
2524rabeqi 3419 . . . 4 {𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V}
26 rab0 4349 . . . 4 {𝑝 ∈ ∅ ∣ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)) ∈ V} = ∅
276, 25, 263eqtri 2756 . . 3 dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
28 mptrel 5788 . . . 4 Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧)))
29 reldm0 5891 . . . 4 (Rel (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) → ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅))
3028, 29ax-mp 5 . . 3 ((𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅ ↔ dom (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅)
3127, 30mpbir 231 . 2 (𝑝 ∈ {𝑦 ∈ 𝒫 {𝐴} ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ {𝐴} ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))) = ∅
324, 31eqtri 2752 1 (pmTrsp‘{𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589  {cpr 4591   cuni 4871   class class class wbr 5107  cmpt 5188  dom cdm 5638  Rel wrel 5643  cfv 6511  2oc2o 8428  cen 8915  pmTrspcpmtr 19371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-pmtr 19372
This theorem is referenced by:  psgnsn  19450
  Copyright terms: Public domain W3C validator