Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imageval Structured version   Visualization version   GIF version

Theorem imageval 35894
Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
imageval Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Distinct variable group:   𝑥,𝑅

Proof of Theorem imageval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funimage 35892 . . 3 Fun Image𝑅
2 funrel 6595 . . 3 (Fun Image𝑅 → Rel Image𝑅)
31, 2ax-mp 5 . 2 Rel Image𝑅
4 mptrel 5849 . 2 Rel (𝑥 ∈ V ↦ (𝑅𝑥))
5 vex 3492 . . . . 5 𝑦 ∈ V
6 vex 3492 . . . . 5 𝑧 ∈ V
75, 6breldm 5933 . . . 4 (𝑦Image𝑅𝑧𝑦 ∈ dom Image𝑅)
8 fnimage 35893 . . . . 5 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
98fndmi 6683 . . . 4 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
107, 9eleqtrdi 2854 . . 3 (𝑦Image𝑅𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
115, 6breldm 5933 . . . 4 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ dom (𝑥 ∈ V ↦ (𝑅𝑥)))
12 eqid 2740 . . . . . 6 (𝑥 ∈ V ↦ (𝑅𝑥)) = (𝑥 ∈ V ↦ (𝑅𝑥))
1312dmmpt 6271 . . . . 5 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V}
14 rabab 3520 . . . . 5 {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V} = {𝑥 ∣ (𝑅𝑥) ∈ V}
1513, 14eqtri 2768 . . . 4 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}
1611, 15eleqtrdi 2854 . . 3 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
17 imaeq2 6085 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2829 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
195, 18elab 3694 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
205, 6brimage 35890 . . . . 5 (𝑦Image𝑅𝑧𝑧 = (𝑅𝑦))
21 eqcom 2747 . . . . . 6 (𝑧 = (𝑅𝑦) ↔ (𝑅𝑦) = 𝑧)
2217, 12fvmptg 7027 . . . . . . . . 9 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
235, 22mpan 689 . . . . . . . 8 ((𝑅𝑦) ∈ V → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
2423eqeq1d 2742 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧 ↔ (𝑅𝑦) = 𝑧))
25 funmpt 6616 . . . . . . . . 9 Fun (𝑥 ∈ V ↦ (𝑅𝑥))
26 df-fn 6576 . . . . . . . . 9 ((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun (𝑥 ∈ V ↦ (𝑅𝑥)) ∧ dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}))
2725, 15, 26mpbir2an 710 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
2819biimpri 228 . . . . . . . 8 ((𝑅𝑦) ∈ V → 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
29 fnbrfvb 6973 . . . . . . . 8 (((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ∧ 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V}) → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3027, 28, 29sylancr 586 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3124, 30bitr3d 281 . . . . . 6 ((𝑅𝑦) ∈ V → ((𝑅𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3221, 31bitrid 283 . . . . 5 ((𝑅𝑦) ∈ V → (𝑧 = (𝑅𝑦) ↔ 𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3320, 32bitrid 283 . . . 4 ((𝑅𝑦) ∈ V → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3419, 33sylbi 217 . . 3 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3510, 16, 34pm5.21nii 378 . 2 (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧)
363, 4, 35eqbrriv 5815 1 Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  dom cdm 5700  cima 5703  Rel wrel 5705  Fun wfun 6567   Fn wfn 6568  cfv 6573  Imagecimage 35804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-symdif 4272  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-eprel 5599  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fo 6579  df-fv 6581  df-1st 8030  df-2nd 8031  df-txp 35818  df-image 35828
This theorem is referenced by:  fvimage  35895
  Copyright terms: Public domain W3C validator