Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imageval Structured version   Visualization version   GIF version

Theorem imageval 35953
Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
imageval Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Distinct variable group:   𝑥,𝑅

Proof of Theorem imageval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funimage 35951 . . 3 Fun Image𝑅
2 funrel 6558 . . 3 (Fun Image𝑅 → Rel Image𝑅)
31, 2ax-mp 5 . 2 Rel Image𝑅
4 mptrel 5809 . 2 Rel (𝑥 ∈ V ↦ (𝑅𝑥))
5 vex 3468 . . . . 5 𝑦 ∈ V
6 vex 3468 . . . . 5 𝑧 ∈ V
75, 6breldm 5893 . . . 4 (𝑦Image𝑅𝑧𝑦 ∈ dom Image𝑅)
8 fnimage 35952 . . . . 5 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
98fndmi 6647 . . . 4 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
107, 9eleqtrdi 2845 . . 3 (𝑦Image𝑅𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
115, 6breldm 5893 . . . 4 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ dom (𝑥 ∈ V ↦ (𝑅𝑥)))
12 eqid 2736 . . . . . 6 (𝑥 ∈ V ↦ (𝑅𝑥)) = (𝑥 ∈ V ↦ (𝑅𝑥))
1312dmmpt 6234 . . . . 5 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V}
14 rabab 3496 . . . . 5 {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V} = {𝑥 ∣ (𝑅𝑥) ∈ V}
1513, 14eqtri 2759 . . . 4 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}
1611, 15eleqtrdi 2845 . . 3 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
17 imaeq2 6048 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2820 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
195, 18elab 3663 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
205, 6brimage 35949 . . . . 5 (𝑦Image𝑅𝑧𝑧 = (𝑅𝑦))
21 eqcom 2743 . . . . . 6 (𝑧 = (𝑅𝑦) ↔ (𝑅𝑦) = 𝑧)
2217, 12fvmptg 6989 . . . . . . . . 9 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
235, 22mpan 690 . . . . . . . 8 ((𝑅𝑦) ∈ V → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
2423eqeq1d 2738 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧 ↔ (𝑅𝑦) = 𝑧))
25 funmpt 6579 . . . . . . . . 9 Fun (𝑥 ∈ V ↦ (𝑅𝑥))
26 df-fn 6539 . . . . . . . . 9 ((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun (𝑥 ∈ V ↦ (𝑅𝑥)) ∧ dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}))
2725, 15, 26mpbir2an 711 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
2819biimpri 228 . . . . . . . 8 ((𝑅𝑦) ∈ V → 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
29 fnbrfvb 6934 . . . . . . . 8 (((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ∧ 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V}) → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3027, 28, 29sylancr 587 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3124, 30bitr3d 281 . . . . . 6 ((𝑅𝑦) ∈ V → ((𝑅𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3221, 31bitrid 283 . . . . 5 ((𝑅𝑦) ∈ V → (𝑧 = (𝑅𝑦) ↔ 𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3320, 32bitrid 283 . . . 4 ((𝑅𝑦) ∈ V → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3419, 33sylbi 217 . . 3 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3510, 16, 34pm5.21nii 378 . 2 (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧)
363, 4, 35eqbrriv 5775 1 Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2714  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  dom cdm 5659  cima 5662  Rel wrel 5664  Fun wfun 6530   Fn wfn 6531  cfv 6536  Imagecimage 35863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-symdif 4233  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-eprel 5558  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-1st 7993  df-2nd 7994  df-txp 35877  df-image 35887
This theorem is referenced by:  fvimage  35954
  Copyright terms: Public domain W3C validator