Step | Hyp | Ref
| Expression |
1 | | funimage 34513 |
. . 3
⊢ Fun
Image𝑅 |
2 | | funrel 6518 |
. . 3
⊢ (Fun
Image𝑅 → Rel
Image𝑅) |
3 | 1, 2 | ax-mp 5 |
. 2
⊢ Rel
Image𝑅 |
4 | | mptrel 5781 |
. 2
⊢ Rel
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
5 | | vex 3449 |
. . . . 5
⊢ 𝑦 ∈ V |
6 | | vex 3449 |
. . . . 5
⊢ 𝑧 ∈ V |
7 | 5, 6 | breldm 5864 |
. . . 4
⊢ (𝑦Image𝑅𝑧 → 𝑦 ∈ dom Image𝑅) |
8 | | fnimage 34514 |
. . . . 5
⊢
Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
9 | 8 | fndmi 6606 |
. . . 4
⊢ dom
Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
10 | 7, 9 | eleqtrdi 2848 |
. . 3
⊢ (𝑦Image𝑅𝑧 → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
11 | 5, 6 | breldm 5864 |
. . . 4
⊢ (𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧 → 𝑦 ∈ dom (𝑥 ∈ V ↦ (𝑅 “ 𝑥))) |
12 | | eqid 2736 |
. . . . . 6
⊢ (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
13 | 12 | dmmpt 6192 |
. . . . 5
⊢ dom
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∈ V ∣ (𝑅 “ 𝑥) ∈ V} |
14 | | rabab 3473 |
. . . . 5
⊢ {𝑥 ∈ V ∣ (𝑅 “ 𝑥) ∈ V} = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
15 | 13, 14 | eqtri 2764 |
. . . 4
⊢ dom
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
16 | 11, 15 | eleqtrdi 2848 |
. . 3
⊢ (𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧 → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
17 | | imaeq2 6009 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) |
18 | 17 | eleq1d 2822 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
19 | 5, 18 | elab 3630 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
20 | 5, 6 | brimage 34511 |
. . . . 5
⊢ (𝑦Image𝑅𝑧 ↔ 𝑧 = (𝑅 “ 𝑦)) |
21 | | eqcom 2743 |
. . . . . 6
⊢ (𝑧 = (𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = 𝑧) |
22 | 17, 12 | fvmptg 6946 |
. . . . . . . . 9
⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → ((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = (𝑅 “ 𝑦)) |
23 | 5, 22 | mpan 688 |
. . . . . . . 8
⊢ ((𝑅 “ 𝑦) ∈ V → ((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = (𝑅 “ 𝑦)) |
24 | 23 | eqeq1d 2738 |
. . . . . . 7
⊢ ((𝑅 “ 𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ (𝑅 “ 𝑦) = 𝑧)) |
25 | | funmpt 6539 |
. . . . . . . . 9
⊢ Fun
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
26 | | df-fn 6499 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) ∧ dom (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) |
27 | 25, 15, 26 | mpbir2an 709 |
. . . . . . . 8
⊢ (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
28 | 19 | biimpri 227 |
. . . . . . . 8
⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
29 | | fnbrfvb 6895 |
. . . . . . . 8
⊢ (((𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ∧ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
30 | 27, 28, 29 | sylancr 587 |
. . . . . . 7
⊢ ((𝑅 “ 𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
31 | 24, 30 | bitr3d 280 |
. . . . . 6
⊢ ((𝑅 “ 𝑦) ∈ V → ((𝑅 “ 𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
32 | 21, 31 | bitrid 282 |
. . . . 5
⊢ ((𝑅 “ 𝑦) ∈ V → (𝑧 = (𝑅 “ 𝑦) ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
33 | 20, 32 | bitrid 282 |
. . . 4
⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
34 | 19, 33 | sylbi 216 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} → (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
35 | 10, 16, 34 | pm5.21nii 379 |
. 2
⊢ (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧) |
36 | 3, 4, 35 | eqbrriv 5747 |
1
⊢
Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |