| Step | Hyp | Ref
| Expression |
| 1 | | funimage 35929 |
. . 3
⊢ Fun
Image𝑅 |
| 2 | | funrel 6583 |
. . 3
⊢ (Fun
Image𝑅 → Rel
Image𝑅) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ Rel
Image𝑅 |
| 4 | | mptrel 5835 |
. 2
⊢ Rel
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
| 5 | | vex 3484 |
. . . . 5
⊢ 𝑦 ∈ V |
| 6 | | vex 3484 |
. . . . 5
⊢ 𝑧 ∈ V |
| 7 | 5, 6 | breldm 5919 |
. . . 4
⊢ (𝑦Image𝑅𝑧 → 𝑦 ∈ dom Image𝑅) |
| 8 | | fnimage 35930 |
. . . . 5
⊢
Image𝑅 Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 9 | 8 | fndmi 6672 |
. . . 4
⊢ dom
Image𝑅 = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 10 | 7, 9 | eleqtrdi 2851 |
. . 3
⊢ (𝑦Image𝑅𝑧 → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
| 11 | 5, 6 | breldm 5919 |
. . . 4
⊢ (𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧 → 𝑦 ∈ dom (𝑥 ∈ V ↦ (𝑅 “ 𝑥))) |
| 12 | | eqid 2737 |
. . . . . 6
⊢ (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
| 13 | 12 | dmmpt 6260 |
. . . . 5
⊢ dom
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∈ V ∣ (𝑅 “ 𝑥) ∈ V} |
| 14 | | rabab 3512 |
. . . . 5
⊢ {𝑥 ∈ V ∣ (𝑅 “ 𝑥) ∈ V} = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 15 | 13, 14 | eqtri 2765 |
. . . 4
⊢ dom
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 16 | 11, 15 | eleqtrdi 2851 |
. . 3
⊢ (𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧 → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
| 17 | | imaeq2 6074 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑅 “ 𝑥) = (𝑅 “ 𝑦)) |
| 18 | 17 | eleq1d 2826 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝑅 “ 𝑥) ∈ V ↔ (𝑅 “ 𝑦) ∈ V)) |
| 19 | 5, 18 | elab 3679 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (𝑅 “ 𝑦) ∈ V) |
| 20 | 5, 6 | brimage 35927 |
. . . . 5
⊢ (𝑦Image𝑅𝑧 ↔ 𝑧 = (𝑅 “ 𝑦)) |
| 21 | | eqcom 2744 |
. . . . . 6
⊢ (𝑧 = (𝑅 “ 𝑦) ↔ (𝑅 “ 𝑦) = 𝑧) |
| 22 | 17, 12 | fvmptg 7014 |
. . . . . . . . 9
⊢ ((𝑦 ∈ V ∧ (𝑅 “ 𝑦) ∈ V) → ((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = (𝑅 “ 𝑦)) |
| 23 | 5, 22 | mpan 690 |
. . . . . . . 8
⊢ ((𝑅 “ 𝑦) ∈ V → ((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = (𝑅 “ 𝑦)) |
| 24 | 23 | eqeq1d 2739 |
. . . . . . 7
⊢ ((𝑅 “ 𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ (𝑅 “ 𝑦) = 𝑧)) |
| 25 | | funmpt 6604 |
. . . . . . . . 9
⊢ Fun
(𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |
| 26 | | df-fn 6564 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ↔ (Fun (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) ∧ dom (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) = {𝑥 ∣ (𝑅 “ 𝑥) ∈ V})) |
| 27 | 25, 15, 26 | mpbir2an 711 |
. . . . . . . 8
⊢ (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} |
| 28 | 19 | biimpri 228 |
. . . . . . . 8
⊢ ((𝑅 “ 𝑦) ∈ V → 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) |
| 29 | | fnbrfvb 6959 |
. . . . . . . 8
⊢ (((𝑥 ∈ V ↦ (𝑅 “ 𝑥)) Fn {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} ∧ 𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V}) → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 30 | 27, 28, 29 | sylancr 587 |
. . . . . . 7
⊢ ((𝑅 “ 𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅 “ 𝑥))‘𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 31 | 24, 30 | bitr3d 281 |
. . . . . 6
⊢ ((𝑅 “ 𝑦) ∈ V → ((𝑅 “ 𝑦) = 𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 32 | 21, 31 | bitrid 283 |
. . . . 5
⊢ ((𝑅 “ 𝑦) ∈ V → (𝑧 = (𝑅 “ 𝑦) ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 33 | 20, 32 | bitrid 283 |
. . . 4
⊢ ((𝑅 “ 𝑦) ∈ V → (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 34 | 19, 33 | sylbi 217 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∣ (𝑅 “ 𝑥) ∈ V} → (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧)) |
| 35 | 10, 16, 34 | pm5.21nii 378 |
. 2
⊢ (𝑦Image𝑅𝑧 ↔ 𝑦(𝑥 ∈ V ↦ (𝑅 “ 𝑥))𝑧) |
| 36 | 3, 4, 35 | eqbrriv 5801 |
1
⊢
Image𝑅 = (𝑥 ∈ V ↦ (𝑅 “ 𝑥)) |