Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imageval Structured version   Visualization version   GIF version

Theorem imageval 35993
Description: The image functor in maps-to notation. (Contributed by Scott Fenton, 4-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
imageval Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Distinct variable group:   𝑥,𝑅

Proof of Theorem imageval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funimage 35991 . . 3 Fun Image𝑅
2 funrel 6503 . . 3 (Fun Image𝑅 → Rel Image𝑅)
31, 2ax-mp 5 . 2 Rel Image𝑅
4 mptrel 5769 . 2 Rel (𝑥 ∈ V ↦ (𝑅𝑥))
5 vex 3441 . . . . 5 𝑦 ∈ V
6 vex 3441 . . . . 5 𝑧 ∈ V
75, 6breldm 5852 . . . 4 (𝑦Image𝑅𝑧𝑦 ∈ dom Image𝑅)
8 fnimage 35992 . . . . 5 Image𝑅 Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
98fndmi 6590 . . . 4 dom Image𝑅 = {𝑥 ∣ (𝑅𝑥) ∈ V}
107, 9eleqtrdi 2843 . . 3 (𝑦Image𝑅𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
115, 6breldm 5852 . . . 4 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ dom (𝑥 ∈ V ↦ (𝑅𝑥)))
12 eqid 2733 . . . . . 6 (𝑥 ∈ V ↦ (𝑅𝑥)) = (𝑥 ∈ V ↦ (𝑅𝑥))
1312dmmpt 6192 . . . . 5 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V}
14 rabab 3468 . . . . 5 {𝑥 ∈ V ∣ (𝑅𝑥) ∈ V} = {𝑥 ∣ (𝑅𝑥) ∈ V}
1513, 14eqtri 2756 . . . 4 dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}
1611, 15eleqtrdi 2843 . . 3 (𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
17 imaeq2 6009 . . . . . 6 (𝑥 = 𝑦 → (𝑅𝑥) = (𝑅𝑦))
1817eleq1d 2818 . . . . 5 (𝑥 = 𝑦 → ((𝑅𝑥) ∈ V ↔ (𝑅𝑦) ∈ V))
195, 18elab 3631 . . . 4 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (𝑅𝑦) ∈ V)
205, 6brimage 35989 . . . . 5 (𝑦Image𝑅𝑧𝑧 = (𝑅𝑦))
21 eqcom 2740 . . . . . 6 (𝑧 = (𝑅𝑦) ↔ (𝑅𝑦) = 𝑧)
2217, 12fvmptg 6933 . . . . . . . . 9 ((𝑦 ∈ V ∧ (𝑅𝑦) ∈ V) → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
235, 22mpan 690 . . . . . . . 8 ((𝑅𝑦) ∈ V → ((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = (𝑅𝑦))
2423eqeq1d 2735 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧 ↔ (𝑅𝑦) = 𝑧))
25 funmpt 6524 . . . . . . . . 9 Fun (𝑥 ∈ V ↦ (𝑅𝑥))
26 df-fn 6489 . . . . . . . . 9 ((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ↔ (Fun (𝑥 ∈ V ↦ (𝑅𝑥)) ∧ dom (𝑥 ∈ V ↦ (𝑅𝑥)) = {𝑥 ∣ (𝑅𝑥) ∈ V}))
2725, 15, 26mpbir2an 711 . . . . . . . 8 (𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V}
2819biimpri 228 . . . . . . . 8 ((𝑅𝑦) ∈ V → 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V})
29 fnbrfvb 6878 . . . . . . . 8 (((𝑥 ∈ V ↦ (𝑅𝑥)) Fn {𝑥 ∣ (𝑅𝑥) ∈ V} ∧ 𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V}) → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3027, 28, 29sylancr 587 . . . . . . 7 ((𝑅𝑦) ∈ V → (((𝑥 ∈ V ↦ (𝑅𝑥))‘𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3124, 30bitr3d 281 . . . . . 6 ((𝑅𝑦) ∈ V → ((𝑅𝑦) = 𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3221, 31bitrid 283 . . . . 5 ((𝑅𝑦) ∈ V → (𝑧 = (𝑅𝑦) ↔ 𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3320, 32bitrid 283 . . . 4 ((𝑅𝑦) ∈ V → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3419, 33sylbi 217 . . 3 (𝑦 ∈ {𝑥 ∣ (𝑅𝑥) ∈ V} → (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧))
3510, 16, 34pm5.21nii 378 . 2 (𝑦Image𝑅𝑧𝑦(𝑥 ∈ V ↦ (𝑅𝑥))𝑧)
363, 4, 35eqbrriv 5735 1 Image𝑅 = (𝑥 ∈ V ↦ (𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437   class class class wbr 5093  cmpt 5174  dom cdm 5619  cima 5622  Rel wrel 5624  Fun wfun 6480   Fn wfn 6481  cfv 6486  Imagecimage 35903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-symdif 4202  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-eprel 5519  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-1st 7927  df-2nd 7928  df-txp 35917  df-image 35927
This theorem is referenced by:  fvimage  35994
  Copyright terms: Public domain W3C validator