Step | Hyp | Ref
| Expression |
1 | | relco 6137 |
. 2
⊢ Rel
(𝐺 ∘ 𝐹) |
2 | | mptrel 5724 |
. 2
⊢ Rel
(𝑥 ∈ 𝐴 ↦ 𝑇) |
3 | | fmptco.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑅)) |
4 | | fmptco.1 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ 𝐵) |
5 | 3, 4 | fmpt3d 6972 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
6 | 5 | ffund 6588 |
. . . . . . . . . 10
⊢ (𝜑 → Fun 𝐹) |
7 | | funbrfv 6802 |
. . . . . . . . . . 11
⊢ (Fun
𝐹 → (𝑧𝐹𝑢 → (𝐹‘𝑧) = 𝑢)) |
8 | 7 | imp 406 |
. . . . . . . . . 10
⊢ ((Fun
𝐹 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
9 | 6, 8 | sylan 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝐹‘𝑧) = 𝑢) |
10 | 9 | eqcomd 2744 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → 𝑢 = (𝐹‘𝑧)) |
11 | 10 | a1d 25 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧𝐹𝑢) → (𝑢𝐺𝑤 → 𝑢 = (𝐹‘𝑧))) |
12 | 11 | expimpd 453 |
. . . . . 6
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) → 𝑢 = (𝐹‘𝑧))) |
13 | 12 | pm4.71rd 562 |
. . . . 5
⊢ (𝜑 → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
14 | 13 | exbidv 1925 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)))) |
15 | | fvex 6769 |
. . . . . 6
⊢ (𝐹‘𝑧) ∈ V |
16 | | breq2 5074 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑧) → (𝑧𝐹𝑢 ↔ 𝑧𝐹(𝐹‘𝑧))) |
17 | | breq1 5073 |
. . . . . . 7
⊢ (𝑢 = (𝐹‘𝑧) → (𝑢𝐺𝑤 ↔ (𝐹‘𝑧)𝐺𝑤)) |
18 | 16, 17 | anbi12d 630 |
. . . . . 6
⊢ (𝑢 = (𝐹‘𝑧) → ((𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤))) |
19 | 15, 18 | ceqsexv 3469 |
. . . . 5
⊢
(∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤)) |
20 | | funfvbrb 6910 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
21 | 6, 20 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧𝐹(𝐹‘𝑧))) |
22 | 5 | fdmd 6595 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 = 𝐴) |
23 | 22 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴)) |
24 | 21, 23 | bitr3d 280 |
. . . . . . 7
⊢ (𝜑 → (𝑧𝐹(𝐹‘𝑧) ↔ 𝑧 ∈ 𝐴)) |
25 | 3 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝜑 → (𝐹‘𝑧) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
26 | | fmptco.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 = (𝑦 ∈ 𝐵 ↦ 𝑆)) |
27 | | eqidd 2739 |
. . . . . . . 8
⊢ (𝜑 → 𝑤 = 𝑤) |
28 | 25, 26, 27 | breq123d 5084 |
. . . . . . 7
⊢ (𝜑 → ((𝐹‘𝑧)𝐺𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
29 | 24, 28 | anbi12d 630 |
. . . . . 6
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤))) |
30 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑧 |
31 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑥𝜑 |
32 | | nffvmpt1 6767 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧) |
33 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑦 ∈ 𝐵 ↦ 𝑆) |
34 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥𝑤 |
35 | 32, 33, 34 | nfbr 5117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 |
36 | | nfcsb1v 3853 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝑇 |
37 | 36 | nfeq2 2923 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑤 = ⦋𝑧 / 𝑥⦌𝑇 |
38 | 35, 37 | nfbi 1907 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
39 | 31, 38 | nfim 1900 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
40 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)) |
41 | 40 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
42 | | csbeq1a 3842 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑧 → 𝑇 = ⦋𝑧 / 𝑥⦌𝑇) |
43 | 42 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
44 | 41, 43 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇) ↔ (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
45 | 44 | imbi2d 340 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → ((𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)))) |
46 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑤 ∈ V |
47 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → 𝑦 = 𝑅) |
48 | 47 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑦 ∈ 𝐵 ↔ 𝑅 ∈ 𝐵)) |
49 | | id 22 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑤 → 𝑢 = 𝑤) |
50 | | fmptco.4 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑅 → 𝑆 = 𝑇) |
51 | 49, 50 | eqeqan12rd 2753 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → (𝑢 = 𝑆 ↔ 𝑤 = 𝑇)) |
52 | 48, 51 | anbi12d 630 |
. . . . . . . . . . . . 13
⊢ ((𝑦 = 𝑅 ∧ 𝑢 = 𝑤) → ((𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆) ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
53 | | df-mpt 5154 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝐵 ↦ 𝑆) = {〈𝑦, 𝑢〉 ∣ (𝑦 ∈ 𝐵 ∧ 𝑢 = 𝑆)} |
54 | 52, 53 | brabga 5440 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝐵 ∧ 𝑤 ∈ V) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
55 | 4, 46, 54 | sylancl 585 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
56 | | id 22 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐴) |
57 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ 𝐴 ↦ 𝑅) = (𝑥 ∈ 𝐴 ↦ 𝑅) |
58 | 57 | fvmpt2 6868 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑅 ∈ 𝐵) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
59 | 56, 4, 58 | syl2an2 682 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥) = 𝑅) |
60 | 59 | breq1d 5080 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑅(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤)) |
61 | 4 | biantrurd 532 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑤 = 𝑇 ↔ (𝑅 ∈ 𝐵 ∧ 𝑤 = 𝑇))) |
62 | 55, 60, 61 | 3bitr4d 310 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇)) |
63 | 62 | expcom 413 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑥)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = 𝑇))) |
64 | 30, 39, 45, 63 | vtoclgaf 3502 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐴 → (𝜑 → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
65 | 64 | impcom 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
66 | 65 | pm5.32da 578 |
. . . . . 6
⊢ (𝜑 → ((𝑧 ∈ 𝐴 ∧ ((𝑥 ∈ 𝐴 ↦ 𝑅)‘𝑧)(𝑦 ∈ 𝐵 ↦ 𝑆)𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
67 | 29, 66 | bitrd 278 |
. . . . 5
⊢ (𝜑 → ((𝑧𝐹(𝐹‘𝑧) ∧ (𝐹‘𝑧)𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
68 | 19, 67 | syl5bb 282 |
. . . 4
⊢ (𝜑 → (∃𝑢(𝑢 = (𝐹‘𝑧) ∧ (𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
69 | 14, 68 | bitrd 278 |
. . 3
⊢ (𝜑 → (∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
70 | | vex 3426 |
. . . 4
⊢ 𝑧 ∈ V |
71 | 70, 46 | opelco 5769 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ ∃𝑢(𝑧𝐹𝑢 ∧ 𝑢𝐺𝑤)) |
72 | | df-mpt 5154 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ 𝑇) = {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} |
73 | 72 | eleq2i 2830 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)}) |
74 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑥 𝑧 ∈ 𝐴 |
75 | 36 | nfeq2 2923 |
. . . . . 6
⊢
Ⅎ𝑥 𝑣 = ⦋𝑧 / 𝑥⦌𝑇 |
76 | 74, 75 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥(𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) |
77 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑣(𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇) |
78 | | eleq1w 2821 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
79 | 42 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝑣 = 𝑇 ↔ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇)) |
80 | 78, 79 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇))) |
81 | | eqeq1 2742 |
. . . . . 6
⊢ (𝑣 = 𝑤 → (𝑣 = ⦋𝑧 / 𝑥⦌𝑇 ↔ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
82 | 81 | anbi2d 628 |
. . . . 5
⊢ (𝑣 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑣 = ⦋𝑧 / 𝑥⦌𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇))) |
83 | 76, 77, 70, 46, 80, 82 | opelopabf 5451 |
. . . 4
⊢
(〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑣〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑣 = 𝑇)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
84 | 73, 83 | bitri 274 |
. . 3
⊢
(〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇) ↔ (𝑧 ∈ 𝐴 ∧ 𝑤 = ⦋𝑧 / 𝑥⦌𝑇)) |
85 | 69, 71, 84 | 3bitr4g 313 |
. 2
⊢ (𝜑 → (〈𝑧, 𝑤〉 ∈ (𝐺 ∘ 𝐹) ↔ 〈𝑧, 𝑤〉 ∈ (𝑥 ∈ 𝐴 ↦ 𝑇))) |
86 | 1, 2, 85 | eqrelrdv 5691 |
1
⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ 𝑇)) |