MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptco Structured version   Visualization version   GIF version

Theorem fmptco 6868
Description: Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1 ((𝜑𝑥𝐴) → 𝑅𝐵)
fmptco.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptco.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptco.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptco (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝑅   𝜑,𝑥   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptco
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6064 . 2 Rel (𝐺𝐹)
2 mptrel 5661 . 2 Rel (𝑥𝐴𝑇)
3 fmptco.2 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥𝐴𝑅))
4 fmptco.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑅𝐵)
53, 4fmpt3d 6857 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
65ffund 6491 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7 funbrfv 6691 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧𝐹𝑢 → (𝐹𝑧) = 𝑢))
87imp 410 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
96, 8sylan 583 . . . . . . . . 9 ((𝜑𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
109eqcomd 2804 . . . . . . . 8 ((𝜑𝑧𝐹𝑢) → 𝑢 = (𝐹𝑧))
1110a1d 25 . . . . . . 7 ((𝜑𝑧𝐹𝑢) → (𝑢𝐺𝑤𝑢 = (𝐹𝑧)))
1211expimpd 457 . . . . . 6 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) → 𝑢 = (𝐹𝑧)))
1312pm4.71rd 566 . . . . 5 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
1413exbidv 1922 . . . 4 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
15 fvex 6658 . . . . . 6 (𝐹𝑧) ∈ V
16 breq2 5034 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑧𝐹𝑢𝑧𝐹(𝐹𝑧)))
17 breq1 5033 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑢𝐺𝑤 ↔ (𝐹𝑧)𝐺𝑤))
1816, 17anbi12d 633 . . . . . 6 (𝑢 = (𝐹𝑧) → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
1915, 18ceqsexv 3489 . . . . 5 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤))
20 funfvbrb 6798 . . . . . . . . 9 (Fun 𝐹 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
216, 20syl 17 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
225fdmd 6497 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
2322eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
2421, 23bitr3d 284 . . . . . . 7 (𝜑 → (𝑧𝐹(𝐹𝑧) ↔ 𝑧𝐴))
253fveq1d 6647 . . . . . . . 8 (𝜑 → (𝐹𝑧) = ((𝑥𝐴𝑅)‘𝑧))
26 fmptco.3 . . . . . . . 8 (𝜑𝐺 = (𝑦𝐵𝑆))
27 eqidd 2799 . . . . . . . 8 (𝜑𝑤 = 𝑤)
2825, 26, 27breq123d 5044 . . . . . . 7 (𝜑 → ((𝐹𝑧)𝐺𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
2924, 28anbi12d 633 . . . . . 6 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤)))
30 nfcv 2955 . . . . . . . . 9 𝑥𝑧
31 nfv 1915 . . . . . . . . . 10 𝑥𝜑
32 nffvmpt1 6656 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑅)‘𝑧)
33 nfcv 2955 . . . . . . . . . . . 12 𝑥(𝑦𝐵𝑆)
34 nfcv 2955 . . . . . . . . . . . 12 𝑥𝑤
3532, 33, 34nfbr 5077 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤
36 nfcsb1v 3852 . . . . . . . . . . . 12 𝑥𝑧 / 𝑥𝑇
3736nfeq2 2972 . . . . . . . . . . 11 𝑥 𝑤 = 𝑧 / 𝑥𝑇
3835, 37nfbi 1904 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)
3931, 38nfim 1897 . . . . . . . . 9 𝑥(𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
40 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴𝑅)‘𝑥) = ((𝑥𝐴𝑅)‘𝑧))
4140breq1d 5040 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
42 csbeq1a 3842 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑇 = 𝑧 / 𝑥𝑇)
4342eqeq2d 2809 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑤 = 𝑇𝑤 = 𝑧 / 𝑥𝑇))
4441, 43bibi12d 349 . . . . . . . . . 10 (𝑥 = 𝑧 → ((((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇) ↔ (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
4544imbi2d 344 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))))
46 vex 3444 . . . . . . . . . . . 12 𝑤 ∈ V
47 simpl 486 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑦 = 𝑅)
4847eleq1d 2874 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑦𝐵𝑅𝐵))
49 id 22 . . . . . . . . . . . . . . 15 (𝑢 = 𝑤𝑢 = 𝑤)
50 fmptco.4 . . . . . . . . . . . . . . 15 (𝑦 = 𝑅𝑆 = 𝑇)
5149, 50eqeqan12rd 2817 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑢 = 𝑆𝑤 = 𝑇))
5248, 51anbi12d 633 . . . . . . . . . . . . 13 ((𝑦 = 𝑅𝑢 = 𝑤) → ((𝑦𝐵𝑢 = 𝑆) ↔ (𝑅𝐵𝑤 = 𝑇)))
53 df-mpt 5111 . . . . . . . . . . . . 13 (𝑦𝐵𝑆) = {⟨𝑦, 𝑢⟩ ∣ (𝑦𝐵𝑢 = 𝑆)}
5452, 53brabga 5386 . . . . . . . . . . . 12 ((𝑅𝐵𝑤 ∈ V) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
554, 46, 54sylancl 589 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
56 id 22 . . . . . . . . . . . . 13 (𝑥𝐴𝑥𝐴)
57 eqid 2798 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5857fvmpt2 6756 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅𝐵) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
5956, 4, 58syl2an2 685 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
6059breq1d 5040 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑅(𝑦𝐵𝑆)𝑤))
614biantrurd 536 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑤 = 𝑇 ↔ (𝑅𝐵𝑤 = 𝑇)))
6255, 60, 613bitr4d 314 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇))
6362expcom 417 . . . . . . . . 9 (𝑥𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)))
6430, 39, 45, 63vtoclgaf 3521 . . . . . . . 8 (𝑧𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
6564impcom 411 . . . . . . 7 ((𝜑𝑧𝐴) → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
6665pm5.32da 582 . . . . . 6 (𝜑 → ((𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6729, 66bitrd 282 . . . . 5 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6819, 67syl5bb 286 . . . 4 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6914, 68bitrd 282 . . 3 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
70 vex 3444 . . . 4 𝑧 ∈ V
7170, 46opelco 5706 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤))
72 df-mpt 5111 . . . . 5 (𝑥𝐴𝑇) = {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)}
7372eleq2i 2881 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)})
74 nfv 1915 . . . . . 6 𝑥 𝑧𝐴
7536nfeq2 2972 . . . . . 6 𝑥 𝑣 = 𝑧 / 𝑥𝑇
7674, 75nfan 1900 . . . . 5 𝑥(𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)
77 nfv 1915 . . . . 5 𝑣(𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)
78 eleq1w 2872 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7942eqeq2d 2809 . . . . . 6 (𝑥 = 𝑧 → (𝑣 = 𝑇𝑣 = 𝑧 / 𝑥𝑇))
8078, 79anbi12d 633 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑣 = 𝑇) ↔ (𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)))
81 eqeq1 2802 . . . . . 6 (𝑣 = 𝑤 → (𝑣 = 𝑧 / 𝑥𝑇𝑤 = 𝑧 / 𝑥𝑇))
8281anbi2d 631 . . . . 5 (𝑣 = 𝑤 → ((𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8376, 77, 70, 46, 80, 82opelopabf 5397 . . . 4 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)} ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8473, 83bitri 278 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8569, 71, 843bitr4g 317 . 2 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇)))
861, 2, 85eqrelrdv 5629 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  csb 3828  cop 4531   class class class wbr 5030  {copab 5092  cmpt 5110  dom cdm 5519  ccom 5523  Fun wfun 6318  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332
This theorem is referenced by:  fmptcof  6869  cofmpt  6871  fcompt  6872  fcoconst  6873  ofco  7409  ccatco  14188  rlimcn1  14937  rlimdiv  14994  ackbijnn  15175  setcepi  17340  prf1st  17446  prf2nd  17447  hofcllem  17500  prdsidlem  17935  pws0g  17939  pwsco1mhm  17988  pwsco2mhm  17989  smndex1iidm  18058  smndex2dlinvh  18074  pwsinvg  18204  pwssub  18205  galactghm  18524  efginvrel1  18846  frgpup3lem  18895  gsumzf1o  19025  gsumconst  19047  gsummptshft  19049  gsumzmhm  19050  gsummhm2  19052  gsummptmhm  19053  gsumsub  19061  gsum2dlem2  19084  dprdfsub  19136  lmhmvsca  19810  frgpcyg  20265  evpmodpmf1o  20285  psrass1lem  20615  psrlinv  20635  psrcom  20647  evlslem2  20751  coe1fval3  20837  psropprmul  20867  coe1z  20892  coe1mul2  20898  coe1tm  20902  ply1coe  20925  evls1sca  20947  mhmvlin  21004  ofco2  21056  mdetleib2  21193  mdetralt  21213  smadiadetlem3  21273  ptrescn  22244  lmcn2  22254  qtopeu  22321  flfcnp2  22612  tgpconncomp  22718  tsmssub  22754  tsmsxplem1  22758  negfcncf  23528  pcopt  23627  pcopt2  23628  pi1xfrcnvlem  23661  ovolctb  24094  ovolfs2  24175  uniioombllem2  24187  ismbf  24232  mbfconst  24237  limccnp2  24495  limcco  24496  dvcof  24551  dvcj  24553  dvfre  24554  dvmptcj  24571  dvmptco  24575  dvcnvlem  24579  dvlip  24596  dvlipcn  24597  itgsubstlem  24651  plyco  24838  dgrcolem1  24870  dgrcolem2  24871  dgrco  24872  plycjlem  24873  taylply2  24963  logcn  25238  leibpi  25528  efrlim  25555  jensenlem2  25573  amgmlem  25575  ftalem7  25664  dchrisum0  26104  ofcfval4  31474  eulerpartgbij  31740  dstfrvclim1  31845  cvmliftlem6  32650  cvmliftphtlem  32677  cvmlift3lem5  32683  elmsubrn  32888  msubco  32891  circum  33030  mblfinlem2  35095  volsupnfl  35102  itgaddnc  35117  itgmulc2nc  35125  ftc1anclem1  35130  ftc1anclem2  35131  ftc1anclem3  35132  ftc1anclem4  35133  ftc1anclem5  35134  ftc1anclem7  35136  ftc1anclem8  35137  fnopabco  35161  upixp  35167  mendassa  40138  fsovrfovd  40710  fsovcnvlem  40714  cncfcompt  42525  dvcosax  42568  dirkercncflem4  42748  fourierdlem111  42859  meadjiunlem  43104  meadjiun  43105  fundcmpsurbijinjpreimafv  43924  itcovalpclem2  45085  itcovalt2lem2  45090  amgmwlem  45330  amgmlemALT  45331
  Copyright terms: Public domain W3C validator