MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmptco Structured version   Visualization version   GIF version

Theorem fmptco 7130
Description: Composition of two functions expressed as ordered-pair class abstractions. If 𝐹 has the equation (𝑥 + 2) and 𝐺 the equation (3∗𝑧) then (𝐺𝐹) has the equation (3∗(𝑥 + 2)). (Contributed by FL, 21-Jun-2012.) (Revised by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
fmptco.1 ((𝜑𝑥𝐴) → 𝑅𝐵)
fmptco.2 (𝜑𝐹 = (𝑥𝐴𝑅))
fmptco.3 (𝜑𝐺 = (𝑦𝐵𝑆))
fmptco.4 (𝑦 = 𝑅𝑆 = 𝑇)
Assertion
Ref Expression
fmptco (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑦,𝑅   𝜑,𝑥   𝑥,𝑆   𝑦,𝑇
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑦)   𝑅(𝑥)   𝑆(𝑦)   𝑇(𝑥)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem fmptco
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6108 . 2 Rel (𝐺𝐹)
2 mptrel 5817 . 2 Rel (𝑥𝐴𝑇)
3 fmptco.2 . . . . . . . . . . . 12 (𝜑𝐹 = (𝑥𝐴𝑅))
4 fmptco.1 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → 𝑅𝐵)
53, 4fmpt3d 7117 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
65ffund 6721 . . . . . . . . . 10 (𝜑 → Fun 𝐹)
7 funbrfv 6938 . . . . . . . . . . 11 (Fun 𝐹 → (𝑧𝐹𝑢 → (𝐹𝑧) = 𝑢))
87imp 406 . . . . . . . . . 10 ((Fun 𝐹𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
96, 8sylan 580 . . . . . . . . 9 ((𝜑𝑧𝐹𝑢) → (𝐹𝑧) = 𝑢)
109eqcomd 2740 . . . . . . . 8 ((𝜑𝑧𝐹𝑢) → 𝑢 = (𝐹𝑧))
1110a1d 25 . . . . . . 7 ((𝜑𝑧𝐹𝑢) → (𝑢𝐺𝑤𝑢 = (𝐹𝑧)))
1211expimpd 453 . . . . . 6 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) → 𝑢 = (𝐹𝑧)))
1312pm4.71rd 562 . . . . 5 (𝜑 → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
1413exbidv 1920 . . . 4 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ ∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤))))
15 fvex 6900 . . . . . 6 (𝐹𝑧) ∈ V
16 breq2 5129 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑧𝐹𝑢𝑧𝐹(𝐹𝑧)))
17 breq1 5128 . . . . . . 7 (𝑢 = (𝐹𝑧) → (𝑢𝐺𝑤 ↔ (𝐹𝑧)𝐺𝑤))
1816, 17anbi12d 632 . . . . . 6 (𝑢 = (𝐹𝑧) → ((𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤)))
1915, 18ceqsexv 3516 . . . . 5 (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤))
20 funfvbrb 7052 . . . . . . . . 9 (Fun 𝐹 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
216, 20syl 17 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐹(𝐹𝑧)))
225fdmd 6727 . . . . . . . . 9 (𝜑 → dom 𝐹 = 𝐴)
2322eleq2d 2819 . . . . . . . 8 (𝜑 → (𝑧 ∈ dom 𝐹𝑧𝐴))
2421, 23bitr3d 281 . . . . . . 7 (𝜑 → (𝑧𝐹(𝐹𝑧) ↔ 𝑧𝐴))
253fveq1d 6889 . . . . . . . 8 (𝜑 → (𝐹𝑧) = ((𝑥𝐴𝑅)‘𝑧))
26 fmptco.3 . . . . . . . 8 (𝜑𝐺 = (𝑦𝐵𝑆))
27 eqidd 2735 . . . . . . . 8 (𝜑𝑤 = 𝑤)
2825, 26, 27breq123d 5139 . . . . . . 7 (𝜑 → ((𝐹𝑧)𝐺𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
2924, 28anbi12d 632 . . . . . 6 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤)))
30 nfcv 2897 . . . . . . . . 9 𝑥𝑧
31 nfv 1913 . . . . . . . . . 10 𝑥𝜑
32 nffvmpt1 6898 . . . . . . . . . . . 12 𝑥((𝑥𝐴𝑅)‘𝑧)
33 nfcv 2897 . . . . . . . . . . . 12 𝑥(𝑦𝐵𝑆)
34 nfcv 2897 . . . . . . . . . . . 12 𝑥𝑤
3532, 33, 34nfbr 5172 . . . . . . . . . . 11 𝑥((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤
36 nfcsb1v 3905 . . . . . . . . . . . 12 𝑥𝑧 / 𝑥𝑇
3736nfeq2 2915 . . . . . . . . . . 11 𝑥 𝑤 = 𝑧 / 𝑥𝑇
3835, 37nfbi 1902 . . . . . . . . . 10 𝑥(((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)
3931, 38nfim 1895 . . . . . . . . 9 𝑥(𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
40 fveq2 6887 . . . . . . . . . . . 12 (𝑥 = 𝑧 → ((𝑥𝐴𝑅)‘𝑥) = ((𝑥𝐴𝑅)‘𝑧))
4140breq1d 5135 . . . . . . . . . . 11 (𝑥 = 𝑧 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤 ↔ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤))
42 csbeq1a 3895 . . . . . . . . . . . 12 (𝑥 = 𝑧𝑇 = 𝑧 / 𝑥𝑇)
4342eqeq2d 2745 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑤 = 𝑇𝑤 = 𝑧 / 𝑥𝑇))
4441, 43bibi12d 345 . . . . . . . . . 10 (𝑥 = 𝑧 → ((((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇) ↔ (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
4544imbi2d 340 . . . . . . . . 9 (𝑥 = 𝑧 → ((𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)) ↔ (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))))
46 vex 3468 . . . . . . . . . . . 12 𝑤 ∈ V
47 simpl 482 . . . . . . . . . . . . . . 15 ((𝑦 = 𝑅𝑢 = 𝑤) → 𝑦 = 𝑅)
4847eleq1d 2818 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑦𝐵𝑅𝐵))
49 id 22 . . . . . . . . . . . . . . 15 (𝑢 = 𝑤𝑢 = 𝑤)
50 fmptco.4 . . . . . . . . . . . . . . 15 (𝑦 = 𝑅𝑆 = 𝑇)
5149, 50eqeqan12rd 2749 . . . . . . . . . . . . . 14 ((𝑦 = 𝑅𝑢 = 𝑤) → (𝑢 = 𝑆𝑤 = 𝑇))
5248, 51anbi12d 632 . . . . . . . . . . . . 13 ((𝑦 = 𝑅𝑢 = 𝑤) → ((𝑦𝐵𝑢 = 𝑆) ↔ (𝑅𝐵𝑤 = 𝑇)))
53 df-mpt 5208 . . . . . . . . . . . . 13 (𝑦𝐵𝑆) = {⟨𝑦, 𝑢⟩ ∣ (𝑦𝐵𝑢 = 𝑆)}
5452, 53brabga 5521 . . . . . . . . . . . 12 ((𝑅𝐵𝑤 ∈ V) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
554, 46, 54sylancl 586 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑅(𝑦𝐵𝑆)𝑤 ↔ (𝑅𝐵𝑤 = 𝑇)))
56 id 22 . . . . . . . . . . . . 13 (𝑥𝐴𝑥𝐴)
57 eqid 2734 . . . . . . . . . . . . . 14 (𝑥𝐴𝑅) = (𝑥𝐴𝑅)
5857fvmpt2 7008 . . . . . . . . . . . . 13 ((𝑥𝐴𝑅𝐵) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
5956, 4, 58syl2an2 686 . . . . . . . . . . . 12 ((𝜑𝑥𝐴) → ((𝑥𝐴𝑅)‘𝑥) = 𝑅)
6059breq1d 5135 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑅(𝑦𝐵𝑆)𝑤))
614biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑤 = 𝑇 ↔ (𝑅𝐵𝑤 = 𝑇)))
6255, 60, 613bitr4d 311 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇))
6362expcom 413 . . . . . . . . 9 (𝑥𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑥)(𝑦𝐵𝑆)𝑤𝑤 = 𝑇)))
6430, 39, 45, 63vtoclgaf 3560 . . . . . . . 8 (𝑧𝐴 → (𝜑 → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇)))
6564impcom 407 . . . . . . 7 ((𝜑𝑧𝐴) → (((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤𝑤 = 𝑧 / 𝑥𝑇))
6665pm5.32da 579 . . . . . 6 (𝜑 → ((𝑧𝐴 ∧ ((𝑥𝐴𝑅)‘𝑧)(𝑦𝐵𝑆)𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6729, 66bitrd 279 . . . . 5 (𝜑 → ((𝑧𝐹(𝐹𝑧) ∧ (𝐹𝑧)𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6819, 67bitrid 283 . . . 4 (𝜑 → (∃𝑢(𝑢 = (𝐹𝑧) ∧ (𝑧𝐹𝑢𝑢𝐺𝑤)) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
6914, 68bitrd 279 . . 3 (𝜑 → (∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
70 vex 3468 . . . 4 𝑧 ∈ V
7170, 46opelco 5864 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ∃𝑢(𝑧𝐹𝑢𝑢𝐺𝑤))
72 df-mpt 5208 . . . . 5 (𝑥𝐴𝑇) = {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)}
7372eleq2i 2825 . . . 4 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)})
74 nfv 1913 . . . . . 6 𝑥 𝑧𝐴
7536nfeq2 2915 . . . . . 6 𝑥 𝑣 = 𝑧 / 𝑥𝑇
7674, 75nfan 1898 . . . . 5 𝑥(𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)
77 nfv 1913 . . . . 5 𝑣(𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)
78 eleq1w 2816 . . . . . 6 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
7942eqeq2d 2745 . . . . . 6 (𝑥 = 𝑧 → (𝑣 = 𝑇𝑣 = 𝑧 / 𝑥𝑇))
8078, 79anbi12d 632 . . . . 5 (𝑥 = 𝑧 → ((𝑥𝐴𝑣 = 𝑇) ↔ (𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇)))
81 eqeq1 2738 . . . . . 6 (𝑣 = 𝑤 → (𝑣 = 𝑧 / 𝑥𝑇𝑤 = 𝑧 / 𝑥𝑇))
8281anbi2d 630 . . . . 5 (𝑣 = 𝑤 → ((𝑧𝐴𝑣 = 𝑧 / 𝑥𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇)))
8376, 77, 70, 46, 80, 82opelopabf 5532 . . . 4 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑣⟩ ∣ (𝑥𝐴𝑣 = 𝑇)} ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8473, 83bitri 275 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇) ↔ (𝑧𝐴𝑤 = 𝑧 / 𝑥𝑇))
8569, 71, 843bitr4g 314 . 2 (𝜑 → (⟨𝑧, 𝑤⟩ ∈ (𝐺𝐹) ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑥𝐴𝑇)))
861, 2, 85eqrelrdv 5784 1 (𝜑 → (𝐺𝐹) = (𝑥𝐴𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3464  csb 3881  cop 4614   class class class wbr 5125  {copab 5187  cmpt 5207  dom cdm 5667  ccom 5671  Fun wfun 6536  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550
This theorem is referenced by:  fmptcof  7131  cofmpt  7133  fcompt  7134  fcoconst  7135  ofco  7705  ccatco  14857  rlimcn1  15607  rlimdiv  15665  ackbijnn  15847  setcepi  18109  prf1st  18224  prf2nd  18225  hofcllem  18278  prdsidlem  18756  pws0g  18760  mhmvlin  18788  pwsco1mhm  18819  pwsco2mhm  18820  smndex1iidm  18888  smndex2dlinvh  18904  pwsinvg  19045  pwssub  19046  ghmquskerco  19276  galactghm  19395  efginvrel1  19719  frgpup3lem  19768  gsumzf1o  19903  gsumconst  19925  gsummptshft  19927  gsumzmhm  19928  gsummhm2  19930  gsummptmhm  19931  gsumsub  19939  gsum2dlem2  19962  dprdfsub  20014  lmhmvsca  21017  frgpcyg  21559  evpmodpmf1o  21581  psrass1lem  21919  psrlinv  21942  psrcom  21955  evlslem2  22070  psdmplcl  22133  psdmul  22137  coe1fval3  22177  psropprmul  22206  coe1z  22233  coe1mul2  22239  coe1tm  22243  ply1coe  22269  evls1sca  22294  ofco2  22424  mdetleib2  22561  mdetralt  22581  smadiadetlem3  22641  ptrescn  23612  lmcn2  23622  qtopeu  23689  flfcnp2  23980  tgpconncomp  24086  tsmssub  24122  tsmsxplem1  24126  negfcncf  24905  pcopt  25010  pcopt2  25011  pi1xfrcnvlem  25044  ovolctb  25480  ovolfs2  25561  uniioombllem2  25573  ismbf  25618  mbfconst  25623  limccnp2  25882  limcco  25883  dvcof  25941  dvcj  25943  dvfre  25944  dvmptcj  25961  dvmptco  25965  dvcnvlem  25969  dvlip  25987  dvlipcn  25988  itgsubstlem  26044  plyco  26235  dgrcolem1  26268  dgrcolem2  26269  dgrco  26270  plycjlem  26271  taylply2  26364  taylply2OLD  26365  logcn  26644  leibpi  26940  efrlim  26967  efrlimOLD  26968  jensenlem2  26986  amgmlem  26988  ftalem7  27077  dchrisum0  27519  gsumwrd2dccat  33016  ofcfval4  34047  eulerpartgbij  34315  dstfrvclim1  34421  cvmliftlem6  35236  cvmliftphtlem  35263  cvmlift3lem5  35269  elmsubrn  35474  msubco  35477  circum  35620  mblfinlem2  37606  volsupnfl  37613  itgaddnc  37628  itgmulc2nc  37636  ftc1anclem1  37641  ftc1anclem2  37642  ftc1anclem3  37643  ftc1anclem4  37644  ftc1anclem5  37645  ftc1anclem7  37647  ftc1anclem8  37648  fnopabco  37671  upixp  37677  aks6d1c6lem4  42115  selvvvval  42540  evlselv  42542  mendassa  43147  fsovrfovd  43967  fsovcnvlem  43971  cncfcompt  45843  dvcosax  45886  dirkercncflem4  46066  fourierdlem111  46177  meadjiunlem  46425  meadjiun  46426  fundcmpsurbijinjpreimafv  47340  itcovalpclem2  48538  itcovalt2lem2  48543  amgmwlem  49317  amgmlemALT  49318
  Copyright terms: Public domain W3C validator