![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndisj2 | Structured version Visualization version GIF version |
Description: A non-disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ndisj2.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ndisj2 | ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndisj2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
2 | 1 | disjor 5129 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) |
3 | 2 | notbii 320 | . 2 ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) |
4 | rexnal 3101 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) | |
5 | rexnal 3101 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) | |
6 | ioran 983 | . . . . . 6 ⊢ (¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵 ∩ 𝐶) = ∅)) | |
7 | df-ne 2942 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
8 | df-ne 2942 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) ≠ ∅ ↔ ¬ (𝐵 ∩ 𝐶) = ∅) | |
9 | 7, 8 | anbi12i 628 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵 ∩ 𝐶) = ∅)) |
10 | 6, 9 | bitr4i 278 | . . . . 5 ⊢ (¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
11 | 10 | rexbii 3095 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
12 | 5, 11 | bitr3i 277 | . . 3 ⊢ (¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
13 | 12 | rexbii 3095 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
14 | 3, 4, 13 | 3bitr2i 299 | 1 ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 397 ∨ wo 846 = wceq 1542 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 ∩ cin 3948 ∅c0 4323 Disj wdisj 5114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-v 3477 df-dif 3952 df-in 3956 df-nul 4324 df-disj 5115 |
This theorem is referenced by: disjrnmpt2 43934 |
Copyright terms: Public domain | W3C validator |