Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidmex Structured version   Visualization version   GIF version

Theorem unidmex 45048
Description: If 𝐹 is a set, then dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
unidmex.f (𝜑𝐹𝑉)
unidmex.x 𝑋 = dom 𝐹
Assertion
Ref Expression
unidmex (𝜑𝑋 ∈ V)

Proof of Theorem unidmex
StepHypRef Expression
1 unidmex.x . 2 𝑋 = dom 𝐹
2 unidmex.f . . 3 (𝜑𝐹𝑉)
3 dmexg 7834 . . 3 (𝐹𝑉 → dom 𝐹 ∈ V)
4 uniexg 7676 . . 3 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
52, 3, 43syl 18 . 2 (𝜑 dom 𝐹 ∈ V)
61, 5eqeltrid 2832 1 (𝜑𝑋 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3436   cuni 4858  dom cdm 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630
This theorem is referenced by:  omessle  46499  caragensplit  46501  omeunile  46506  caragenuncl  46514  omeunle  46517  omeiunlempt  46521  carageniuncllem2  46523  caragencmpl  46536
  Copyright terms: Public domain W3C validator