Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidmex Structured version   Visualization version   GIF version

Theorem unidmex 44990
Description: If 𝐹 is a set, then dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
unidmex.f (𝜑𝐹𝑉)
unidmex.x 𝑋 = dom 𝐹
Assertion
Ref Expression
unidmex (𝜑𝑋 ∈ V)

Proof of Theorem unidmex
StepHypRef Expression
1 unidmex.x . 2 𝑋 = dom 𝐹
2 unidmex.f . . 3 (𝜑𝐹𝑉)
3 dmexg 7924 . . 3 (𝐹𝑉 → dom 𝐹 ∈ V)
4 uniexg 7759 . . 3 (dom 𝐹 ∈ V → dom 𝐹 ∈ V)
52, 3, 43syl 18 . 2 (𝜑 dom 𝐹 ∈ V)
61, 5eqeltrid 2843 1 (𝜑𝑋 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478   cuni 4912  dom cdm 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-cnv 5697  df-dm 5699  df-rn 5700
This theorem is referenced by:  omessle  46454  caragensplit  46456  omeunile  46461  caragenuncl  46469  omeunle  46472  omeiunlempt  46476  carageniuncllem2  46478  caragencmpl  46491
  Copyright terms: Public domain W3C validator