![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version |
Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
Ref | Expression |
---|---|
unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | dmexg 7941 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
4 | uniexg 7775 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
6 | 1, 5 | eqeltrid 2848 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∪ cuni 4931 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: omessle 46419 caragensplit 46421 omeunile 46426 caragenuncl 46434 omeunle 46437 omeiunlempt 46441 carageniuncllem2 46443 caragencmpl 46456 |
Copyright terms: Public domain | W3C validator |