| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
| Ref | Expression |
|---|---|
| unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
| 2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | dmexg 7880 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 4 | uniexg 7719 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
| 6 | 1, 5 | eqeltrid 2833 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cuni 4874 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: omessle 46503 caragensplit 46505 omeunile 46510 caragenuncl 46518 omeunle 46521 omeiunlempt 46525 carageniuncllem2 46527 caragencmpl 46540 |
| Copyright terms: Public domain | W3C validator |