Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version |
Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
Ref | Expression |
---|---|
unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | dmexg 7724 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
4 | uniexg 7571 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
6 | 1, 5 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cuni 4836 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: omessle 43926 caragensplit 43928 omeunile 43933 caragenuncl 43941 omeunle 43944 omeiunlempt 43948 carageniuncllem2 43950 caragencmpl 43963 |
Copyright terms: Public domain | W3C validator |