| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
| Ref | Expression |
|---|---|
| unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
| 2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 3 | dmexg 7834 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
| 4 | uniexg 7676 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
| 5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
| 6 | 1, 5 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∪ cuni 4858 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: omessle 46499 caragensplit 46501 omeunile 46506 caragenuncl 46514 omeunle 46517 omeiunlempt 46521 carageniuncllem2 46523 caragencmpl 46536 |
| Copyright terms: Public domain | W3C validator |