![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > unidmex | Structured version Visualization version GIF version |
Description: If 𝐹 is a set, then ∪ dom 𝐹 is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
unidmex.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
unidmex.x | ⊢ 𝑋 = ∪ dom 𝐹 |
Ref | Expression |
---|---|
unidmex | ⊢ (𝜑 → 𝑋 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unidmex.x | . 2 ⊢ 𝑋 = ∪ dom 𝐹 | |
2 | unidmex.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
3 | dmexg 7818 | . . 3 ⊢ (𝐹 ∈ 𝑉 → dom 𝐹 ∈ V) | |
4 | uniexg 7655 | . . 3 ⊢ (dom 𝐹 ∈ V → ∪ dom 𝐹 ∈ V) | |
5 | 2, 3, 4 | 3syl 18 | . 2 ⊢ (𝜑 → ∪ dom 𝐹 ∈ V) |
6 | 1, 5 | eqeltrid 2841 | 1 ⊢ (𝜑 → 𝑋 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∪ cuni 4852 dom cdm 5620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 |
This theorem is referenced by: omessle 44381 caragensplit 44383 omeunile 44388 caragenuncl 44396 omeunle 44399 omeiunlempt 44403 carageniuncllem2 44405 caragencmpl 44418 |
Copyright terms: Public domain | W3C validator |