Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvmptunsn2 Structured version   Visualization version   GIF version

Theorem bj-fvmptunsn2 37276
Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvmptunsn.un (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
bj-fvmptunsn.nel (𝜑 → ¬ 𝐶𝐴)
bj-fvmptunsn2.el (𝜑𝐸𝐴)
bj-fvmptunsn2.ex (𝜑𝐺𝑉)
bj-fvmptunsn2.is ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
Assertion
Ref Expression
bj-fvmptunsn2 (𝜑 → (𝐹𝐸) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐸   𝑥,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem bj-fvmptunsn2
StepHypRef Expression
1 bj-fvmptunsn.un . . 3 (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
2 bj-fvmptunsn2.el . . . 4 (𝜑𝐸𝐴)
3 bj-fvmptunsn.nel . . . 4 (𝜑 → ¬ 𝐶𝐴)
4 nelneq 2858 . . . 4 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → ¬ 𝐸 = 𝐶)
52, 3, 4syl2anc 584 . . 3 (𝜑 → ¬ 𝐸 = 𝐶)
61, 5bj-fununsn1 37271 . 2 (𝜑 → (𝐹𝐸) = ((𝑥𝐴𝐵)‘𝐸))
7 eqidd 2736 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
8 bj-fvmptunsn2.is . . 3 ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
9 bj-fvmptunsn2.ex . . 3 (𝜑𝐺𝑉)
107, 8, 2, 9fvmptd 6993 . 2 (𝜑 → ((𝑥𝐴𝐵)‘𝐸) = 𝐺)
116, 10eqtrd 2770 1 (𝜑 → (𝐹𝐸) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cun 3924  {csn 4601  cop 4607  cmpt 5201  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fv 6539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator