| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvmptunsn2 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn.un | ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) |
| bj-fvmptunsn.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| bj-fvmptunsn2.el | ⊢ (𝜑 → 𝐸 ∈ 𝐴) |
| bj-fvmptunsn2.ex | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| bj-fvmptunsn2.is | ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn2 | ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvmptunsn.un | . . 3 ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) | |
| 2 | bj-fvmptunsn2.el | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐴) | |
| 3 | bj-fvmptunsn.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 4 | nelneq 2852 | . . . 4 ⊢ ((𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐸 = 𝐶) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → ¬ 𝐸 = 𝐶) |
| 6 | 1, 5 | bj-fununsn1 37241 | . 2 ⊢ (𝜑 → (𝐹‘𝐸) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐸)) |
| 7 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 8 | bj-fvmptunsn2.is | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) | |
| 9 | bj-fvmptunsn2.ex | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 10 | 7, 8, 2, 9 | fvmptd 6975 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐸) = 𝐺) |
| 11 | 6, 10 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 {csn 4589 〈cop 4595 ↦ cmpt 5188 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |