Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvmptunsn2 Structured version   Visualization version   GIF version

Theorem bj-fvmptunsn2 36139
Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvmptunsn.un (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
bj-fvmptunsn.nel (𝜑 → ¬ 𝐶𝐴)
bj-fvmptunsn2.el (𝜑𝐸𝐴)
bj-fvmptunsn2.ex (𝜑𝐺𝑉)
bj-fvmptunsn2.is ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
Assertion
Ref Expression
bj-fvmptunsn2 (𝜑 → (𝐹𝐸) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐸   𝑥,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem bj-fvmptunsn2
StepHypRef Expression
1 bj-fvmptunsn.un . . 3 (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
2 bj-fvmptunsn2.el . . . 4 (𝜑𝐸𝐴)
3 bj-fvmptunsn.nel . . . 4 (𝜑 → ¬ 𝐶𝐴)
4 nelneq 2858 . . . 4 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → ¬ 𝐸 = 𝐶)
52, 3, 4syl2anc 585 . . 3 (𝜑 → ¬ 𝐸 = 𝐶)
61, 5bj-fununsn1 36134 . 2 (𝜑 → (𝐹𝐸) = ((𝑥𝐴𝐵)‘𝐸))
7 eqidd 2734 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
8 bj-fvmptunsn2.is . . 3 ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
9 bj-fvmptunsn2.ex . . 3 (𝜑𝐺𝑉)
107, 8, 2, 9fvmptd 7006 . 2 (𝜑 → ((𝑥𝐴𝐵)‘𝐸) = 𝐺)
116, 10eqtrd 2773 1 (𝜑 → (𝐹𝐸) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397   = wceq 1542  wcel 2107  cun 3947  {csn 4629  cop 4635  cmpt 5232  cfv 6544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator