| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-fvmptunsn2 | Structured version Visualization version GIF version | ||
| Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn.un | ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) |
| bj-fvmptunsn.nel | ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) |
| bj-fvmptunsn2.el | ⊢ (𝜑 → 𝐸 ∈ 𝐴) |
| bj-fvmptunsn2.ex | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| bj-fvmptunsn2.is | ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) |
| Ref | Expression |
|---|---|
| bj-fvmptunsn2 | ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-fvmptunsn.un | . . 3 ⊢ (𝜑 → 𝐹 = ((𝑥 ∈ 𝐴 ↦ 𝐵) ∪ {〈𝐶, 𝐷〉})) | |
| 2 | bj-fvmptunsn2.el | . . . 4 ⊢ (𝜑 → 𝐸 ∈ 𝐴) | |
| 3 | bj-fvmptunsn.nel | . . . 4 ⊢ (𝜑 → ¬ 𝐶 ∈ 𝐴) | |
| 4 | nelneq 2855 | . . . 4 ⊢ ((𝐸 ∈ 𝐴 ∧ ¬ 𝐶 ∈ 𝐴) → ¬ 𝐸 = 𝐶) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → ¬ 𝐸 = 𝐶) |
| 6 | 1, 5 | bj-fununsn1 37297 | . 2 ⊢ (𝜑 → (𝐹‘𝐸) = ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐸)) |
| 7 | eqidd 2732 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 8 | bj-fvmptunsn2.is | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝐸) → 𝐵 = 𝐺) | |
| 9 | bj-fvmptunsn2.ex | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 10 | 7, 8, 2, 9 | fvmptd 6936 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐸) = 𝐺) |
| 11 | 6, 10 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐹‘𝐸) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∪ cun 3895 {csn 4573 〈cop 4579 ↦ cmpt 5170 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |