Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-fvmptunsn2 Structured version   Visualization version   GIF version

Theorem bj-fvmptunsn2 35426
Description: Value of a function expressed as a union of a mapsto expression and a singleton on a couple (with disjoint domain) at a point in the domain of the mapsto construction. (Contributed by BJ, 18-Mar-2023.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
bj-fvmptunsn.un (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
bj-fvmptunsn.nel (𝜑 → ¬ 𝐶𝐴)
bj-fvmptunsn2.el (𝜑𝐸𝐴)
bj-fvmptunsn2.ex (𝜑𝐺𝑉)
bj-fvmptunsn2.is ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
Assertion
Ref Expression
bj-fvmptunsn2 (𝜑 → (𝐹𝐸) = 𝐺)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐸   𝑥,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem bj-fvmptunsn2
StepHypRef Expression
1 bj-fvmptunsn.un . . 3 (𝜑𝐹 = ((𝑥𝐴𝐵) ∪ {⟨𝐶, 𝐷⟩}))
2 bj-fvmptunsn2.el . . . 4 (𝜑𝐸𝐴)
3 bj-fvmptunsn.nel . . . 4 (𝜑 → ¬ 𝐶𝐴)
4 nelneq 2863 . . . 4 ((𝐸𝐴 ∧ ¬ 𝐶𝐴) → ¬ 𝐸 = 𝐶)
52, 3, 4syl2anc 584 . . 3 (𝜑 → ¬ 𝐸 = 𝐶)
61, 5bj-fununsn1 35421 . 2 (𝜑 → (𝐹𝐸) = ((𝑥𝐴𝐵)‘𝐸))
7 eqidd 2739 . . 3 (𝜑 → (𝑥𝐴𝐵) = (𝑥𝐴𝐵))
8 bj-fvmptunsn2.is . . 3 ((𝜑𝑥 = 𝐸) → 𝐵 = 𝐺)
9 bj-fvmptunsn2.ex . . 3 (𝜑𝐺𝑉)
107, 8, 2, 9fvmptd 6884 . 2 (𝜑 → ((𝑥𝐴𝐵)‘𝐸) = 𝐺)
116, 10eqtrd 2778 1 (𝜑 → (𝐹𝐸) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  cun 3886  {csn 4563  cop 4569  cmpt 5159  cfv 6435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pr 5354
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5077  df-opab 5139  df-mpt 5160  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-iota 6393  df-fun 6437  df-fv 6443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator