MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Visualization version   GIF version

Theorem oemapvali 9753
Description: If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
oemapvali (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3 (𝜑𝐹𝑇𝐺)
2 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
3 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
5 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 oemapval.f . . . 4 (𝜑𝐹𝑆)
7 oemapval.g . . . 4 (𝜑𝐺𝑆)
82, 3, 4, 5, 6, 7oemapval 9752 . . 3 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
10 ssrab2 4103 . . . 4 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵
11 oemapvali.x . . . . 5 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
124adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ∈ On)
13 onss 7820 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ⊆ On)
1510, 14sstrid 4020 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On)
162, 3, 4cantnfs 9735 . . . . . . . . . 10 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
177, 16mpbid 232 . . . . . . . . 9 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1817simprd 495 . . . . . . . 8 (𝜑𝐺 finSupp ∅)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺 finSupp ∅)
2043ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐵 ∈ On)
21 simp2 1137 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐𝐵)
2217simpld 494 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2322ffnd 6748 . . . . . . . . . . 11 (𝜑𝐺 Fn 𝐵)
24233ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐺 Fn 𝐵)
25 ne0i 4364 . . . . . . . . . . 11 ((𝐹𝑐) ∈ (𝐺𝑐) → (𝐺𝑐) ≠ ∅)
26253ad2ant3 1135 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → (𝐺𝑐) ≠ ∅)
27 fvn0elsupp 8221 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝑐𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑐) ≠ ∅)) → 𝑐 ∈ (𝐺 supp ∅))
2820, 21, 24, 26, 27syl22anc 838 . . . . . . . . 9 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐 ∈ (𝐺 supp ∅))
2928rabssdv 4098 . . . . . . . 8 (𝜑 → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
31 fsuppimp 9438 . . . . . . . 8 (𝐺 finSupp ∅ → (Fun 𝐺 ∧ (𝐺 supp ∅) ∈ Fin))
32 ssfi 9240 . . . . . . . . 9 (((𝐺 supp ∅) ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅)) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
3332ex 412 . . . . . . . 8 ((𝐺 supp ∅) ∈ Fin → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3431, 33simpl2im 503 . . . . . . 7 (𝐺 finSupp ∅ → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3519, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
36 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹𝑐) = (𝐹𝑧))
37 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐺𝑐) = (𝐺𝑧))
3836, 37eleq12d 2838 . . . . . . . 8 (𝑐 = 𝑧 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
39 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝐵)
40 simprrl 780 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑧) ∈ (𝐺𝑧))
4138, 39, 40elrabd 3710 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4241ne0d 4365 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅)
43 ordunifi 9354 . . . . . 6 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4415, 35, 42, 43syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4511, 44eqeltrid 2848 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4610, 45sselid 4006 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝐵)
47 fveq2 6920 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
48 fveq2 6920 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
4947, 48eleq12d 2838 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝐺𝑥) ↔ (𝐹𝑋) ∈ (𝐺𝑋)))
50 fveq2 6920 . . . . . . . 8 (𝑐 = 𝑥 → (𝐹𝑐) = (𝐹𝑥))
51 fveq2 6920 . . . . . . . 8 (𝑐 = 𝑥 → (𝐺𝑐) = (𝐺𝑥))
5250, 51eleq12d 2838 . . . . . . 7 (𝑐 = 𝑥 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑥) ∈ (𝐺𝑥)))
5352cbvrabv 3454 . . . . . 6 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} = {𝑥𝐵 ∣ (𝐹𝑥) ∈ (𝐺𝑥)}
5449, 53elrab2 3711 . . . . 5 (𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ↔ (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5545, 54sylib 218 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5655simprd 495 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑋) ∈ (𝐺𝑋))
57 simprrr 781 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))
583adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐴 ∈ On)
5922adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺:𝐵𝐴)
6059, 46ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ 𝐴)
61 onelon 6420 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
6258, 60, 61syl2anc 583 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ On)
63 eloni 6405 . . . . . . . . . 10 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
64 ordirr 6413 . . . . . . . . . 10 (Ord (𝐺𝑋) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
6562, 63, 643syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
66 nelneq 2868 . . . . . . . . 9 (((𝐹𝑋) ∈ (𝐺𝑋) ∧ ¬ (𝐺𝑋) ∈ (𝐺𝑋)) → ¬ (𝐹𝑋) = (𝐺𝑋))
6756, 65, 66syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐹𝑋) = (𝐺𝑋))
68 eleq2 2833 . . . . . . . . . 10 (𝑤 = 𝑋 → (𝑧𝑤𝑧𝑋))
69 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐹𝑤) = (𝐹𝑋))
70 fveq2 6920 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐺𝑤) = (𝐺𝑋))
7169, 70eqeq12d 2756 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑋) = (𝐺𝑋)))
7268, 71imbi12d 344 . . . . . . . . 9 (𝑤 = 𝑋 → ((𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋))))
7372, 57, 46rspcdva 3636 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋)))
7467, 73mtod 198 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ 𝑧𝑋)
75 ssexg 5341 . . . . . . . . . . 11 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵𝐵 ∈ On) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
7610, 12, 75sylancr 586 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
77 ssonuni 7815 . . . . . . . . . 10 ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On))
7876, 15, 77sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On)
7911, 78eqeltrid 2848 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ On)
80 onelon 6420 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ∈ On)
8112, 39, 80syl2anc 583 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ On)
82 ontri1 6429 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑧 ∈ On) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8379, 81, 82syl2anc 583 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8474, 83mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝑧)
85 elssuni 4961 . . . . . . . 8 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
8685, 11sseqtrrdi 4060 . . . . . . 7 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧𝑋)
8741, 86syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝑋)
8884, 87eqssd 4026 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 = 𝑧)
89 eleq1 2832 . . . . . . 7 (𝑋 = 𝑧 → (𝑋𝑤𝑧𝑤))
9089imbi1d 341 . . . . . 6 (𝑋 = 𝑧 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9190ralbidv 3184 . . . . 5 (𝑋 = 𝑧 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9288, 91syl 17 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9357, 92mpbird 257 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
9446, 56, 933jca 1128 . 2 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
959, 94rexlimddv 3167 1 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352   cuni 4931   class class class wbr 5166  {copab 5228  dom cdm 5700  Ord word 6394  Oncon0 6395  Fun wfun 6567   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-1o 8522  df-map 8886  df-en 9004  df-fin 9007  df-fsupp 9432  df-cnf 9731
This theorem is referenced by:  cantnflem1a  9754  cantnflem1b  9755  cantnflem1c  9756  cantnflem1d  9757  cantnflem1  9758
  Copyright terms: Public domain W3C validator