MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Visualization version   GIF version

Theorem oemapvali 9620
Description: If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
oemapvali (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3 (𝜑𝐹𝑇𝐺)
2 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
3 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
5 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 oemapval.f . . . 4 (𝜑𝐹𝑆)
7 oemapval.g . . . 4 (𝜑𝐺𝑆)
82, 3, 4, 5, 6, 7oemapval 9619 . . 3 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
91, 8mpbid 231 . 2 (𝜑 → ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
10 ssrab2 4037 . . . 4 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵
11 oemapvali.x . . . . 5 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
124adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ∈ On)
13 onss 7719 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ⊆ On)
1510, 14sstrid 3955 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On)
162, 3, 4cantnfs 9602 . . . . . . . . . 10 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
177, 16mpbid 231 . . . . . . . . 9 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1817simprd 496 . . . . . . . 8 (𝜑𝐺 finSupp ∅)
1918adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺 finSupp ∅)
2043ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐵 ∈ On)
21 simp2 1137 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐𝐵)
2217simpld 495 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2322ffnd 6669 . . . . . . . . . . 11 (𝜑𝐺 Fn 𝐵)
24233ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐺 Fn 𝐵)
25 ne0i 4294 . . . . . . . . . . 11 ((𝐹𝑐) ∈ (𝐺𝑐) → (𝐺𝑐) ≠ ∅)
26253ad2ant3 1135 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → (𝐺𝑐) ≠ ∅)
27 fvn0elsupp 8111 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝑐𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑐) ≠ ∅)) → 𝑐 ∈ (𝐺 supp ∅))
2820, 21, 24, 26, 27syl22anc 837 . . . . . . . . 9 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐 ∈ (𝐺 supp ∅))
2928rabssdv 4032 . . . . . . . 8 (𝜑 → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
3029adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
31 fsuppimp 9311 . . . . . . . 8 (𝐺 finSupp ∅ → (Fun 𝐺 ∧ (𝐺 supp ∅) ∈ Fin))
32 ssfi 9117 . . . . . . . . 9 (((𝐺 supp ∅) ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅)) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
3332ex 413 . . . . . . . 8 ((𝐺 supp ∅) ∈ Fin → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3431, 33simpl2im 504 . . . . . . 7 (𝐺 finSupp ∅ → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3519, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
36 fveq2 6842 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹𝑐) = (𝐹𝑧))
37 fveq2 6842 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐺𝑐) = (𝐺𝑧))
3836, 37eleq12d 2832 . . . . . . . 8 (𝑐 = 𝑧 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
39 simprl 769 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝐵)
40 simprrl 779 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑧) ∈ (𝐺𝑧))
4138, 39, 40elrabd 3647 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4241ne0d 4295 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅)
43 ordunifi 9237 . . . . . 6 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4415, 35, 42, 43syl3anc 1371 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4511, 44eqeltrid 2842 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4610, 45sselid 3942 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝐵)
47 fveq2 6842 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
48 fveq2 6842 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
4947, 48eleq12d 2832 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝐺𝑥) ↔ (𝐹𝑋) ∈ (𝐺𝑋)))
50 fveq2 6842 . . . . . . . 8 (𝑐 = 𝑥 → (𝐹𝑐) = (𝐹𝑥))
51 fveq2 6842 . . . . . . . 8 (𝑐 = 𝑥 → (𝐺𝑐) = (𝐺𝑥))
5250, 51eleq12d 2832 . . . . . . 7 (𝑐 = 𝑥 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑥) ∈ (𝐺𝑥)))
5352cbvrabv 3417 . . . . . 6 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} = {𝑥𝐵 ∣ (𝐹𝑥) ∈ (𝐺𝑥)}
5449, 53elrab2 3648 . . . . 5 (𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ↔ (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5545, 54sylib 217 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5655simprd 496 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑋) ∈ (𝐺𝑋))
57 simprrr 780 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))
583adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐴 ∈ On)
5922adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺:𝐵𝐴)
6059, 46ffvelcdmd 7036 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ 𝐴)
61 onelon 6342 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
6258, 60, 61syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ On)
63 eloni 6327 . . . . . . . . . 10 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
64 ordirr 6335 . . . . . . . . . 10 (Ord (𝐺𝑋) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
6562, 63, 643syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
66 nelneq 2861 . . . . . . . . 9 (((𝐹𝑋) ∈ (𝐺𝑋) ∧ ¬ (𝐺𝑋) ∈ (𝐺𝑋)) → ¬ (𝐹𝑋) = (𝐺𝑋))
6756, 65, 66syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐹𝑋) = (𝐺𝑋))
68 eleq2 2826 . . . . . . . . . 10 (𝑤 = 𝑋 → (𝑧𝑤𝑧𝑋))
69 fveq2 6842 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐹𝑤) = (𝐹𝑋))
70 fveq2 6842 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐺𝑤) = (𝐺𝑋))
7169, 70eqeq12d 2752 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑋) = (𝐺𝑋)))
7268, 71imbi12d 344 . . . . . . . . 9 (𝑤 = 𝑋 → ((𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋))))
7372, 57, 46rspcdva 3582 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋)))
7467, 73mtod 197 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ 𝑧𝑋)
75 ssexg 5280 . . . . . . . . . . 11 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵𝐵 ∈ On) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
7610, 12, 75sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
77 ssonuni 7714 . . . . . . . . . 10 ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On))
7876, 15, 77sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On)
7911, 78eqeltrid 2842 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ On)
80 onelon 6342 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ∈ On)
8112, 39, 80syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ On)
82 ontri1 6351 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑧 ∈ On) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8379, 81, 82syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8474, 83mpbird 256 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝑧)
85 elssuni 4898 . . . . . . . 8 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
8685, 11sseqtrrdi 3995 . . . . . . 7 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧𝑋)
8741, 86syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝑋)
8884, 87eqssd 3961 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 = 𝑧)
89 eleq1 2825 . . . . . . 7 (𝑋 = 𝑧 → (𝑋𝑤𝑧𝑤))
9089imbi1d 341 . . . . . 6 (𝑋 = 𝑧 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9190ralbidv 3174 . . . . 5 (𝑋 = 𝑧 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9288, 91syl 17 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9357, 92mpbird 256 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
9446, 56, 933jca 1128 . 2 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
959, 94rexlimddv 3158 1 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  {crab 3407  Vcvv 3445  wss 3910  c0 4282   cuni 4865   class class class wbr 5105  {copab 5167  dom cdm 5633  Ord word 6316  Oncon0 6317  Fun wfun 6490   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357   supp csupp 8092  Fincfn 8883   finSupp cfsupp 9305   CNF ccnf 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-map 8767  df-en 8884  df-fin 8887  df-fsupp 9306  df-cnf 9598
This theorem is referenced by:  cantnflem1a  9621  cantnflem1b  9622  cantnflem1c  9623  cantnflem1d  9624  cantnflem1  9625
  Copyright terms: Public domain W3C validator