MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Visualization version   GIF version

Theorem oemapvali 9574
Description: If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
oemapvali (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3 (𝜑𝐹𝑇𝐺)
2 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
3 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
5 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 oemapval.f . . . 4 (𝜑𝐹𝑆)
7 oemapval.g . . . 4 (𝜑𝐺𝑆)
82, 3, 4, 5, 6, 7oemapval 9573 . . 3 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
91, 8mpbid 232 . 2 (𝜑 → ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
10 ssrab2 4027 . . . 4 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵
11 oemapvali.x . . . . 5 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
124adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ∈ On)
13 onss 7718 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ⊆ On)
1510, 14sstrid 3941 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On)
162, 3, 4cantnfs 9556 . . . . . . . . . 10 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
177, 16mpbid 232 . . . . . . . . 9 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1817simprd 495 . . . . . . . 8 (𝜑𝐺 finSupp ∅)
1918adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺 finSupp ∅)
2043ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐵 ∈ On)
21 simp2 1137 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐𝐵)
2217simpld 494 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2322ffnd 6652 . . . . . . . . . . 11 (𝜑𝐺 Fn 𝐵)
24233ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐺 Fn 𝐵)
25 ne0i 4288 . . . . . . . . . . 11 ((𝐹𝑐) ∈ (𝐺𝑐) → (𝐺𝑐) ≠ ∅)
26253ad2ant3 1135 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → (𝐺𝑐) ≠ ∅)
27 fvn0elsupp 8110 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝑐𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑐) ≠ ∅)) → 𝑐 ∈ (𝐺 supp ∅))
2820, 21, 24, 26, 27syl22anc 838 . . . . . . . . 9 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐 ∈ (𝐺 supp ∅))
2928rabssdv 4020 . . . . . . . 8 (𝜑 → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
31 fsuppimp 9252 . . . . . . . 8 (𝐺 finSupp ∅ → (Fun 𝐺 ∧ (𝐺 supp ∅) ∈ Fin))
32 ssfi 9082 . . . . . . . . 9 (((𝐺 supp ∅) ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅)) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
3332ex 412 . . . . . . . 8 ((𝐺 supp ∅) ∈ Fin → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3431, 33simpl2im 503 . . . . . . 7 (𝐺 finSupp ∅ → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3519, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
36 fveq2 6822 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹𝑐) = (𝐹𝑧))
37 fveq2 6822 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐺𝑐) = (𝐺𝑧))
3836, 37eleq12d 2825 . . . . . . . 8 (𝑐 = 𝑧 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
39 simprl 770 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝐵)
40 simprrl 780 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑧) ∈ (𝐺𝑧))
4138, 39, 40elrabd 3644 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4241ne0d 4289 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅)
43 ordunifi 9174 . . . . . 6 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4415, 35, 42, 43syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4511, 44eqeltrid 2835 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4610, 45sselid 3927 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝐵)
47 fveq2 6822 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
48 fveq2 6822 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
4947, 48eleq12d 2825 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝐺𝑥) ↔ (𝐹𝑋) ∈ (𝐺𝑋)))
50 fveq2 6822 . . . . . . . 8 (𝑐 = 𝑥 → (𝐹𝑐) = (𝐹𝑥))
51 fveq2 6822 . . . . . . . 8 (𝑐 = 𝑥 → (𝐺𝑐) = (𝐺𝑥))
5250, 51eleq12d 2825 . . . . . . 7 (𝑐 = 𝑥 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑥) ∈ (𝐺𝑥)))
5352cbvrabv 3405 . . . . . 6 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} = {𝑥𝐵 ∣ (𝐹𝑥) ∈ (𝐺𝑥)}
5449, 53elrab2 3645 . . . . 5 (𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ↔ (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5545, 54sylib 218 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5655simprd 495 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑋) ∈ (𝐺𝑋))
57 simprrr 781 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))
583adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐴 ∈ On)
5922adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺:𝐵𝐴)
6059, 46ffvelcdmd 7018 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ 𝐴)
61 onelon 6331 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
6258, 60, 61syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ On)
63 eloni 6316 . . . . . . . . . 10 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
64 ordirr 6324 . . . . . . . . . 10 (Ord (𝐺𝑋) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
6562, 63, 643syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
66 nelneq 2855 . . . . . . . . 9 (((𝐹𝑋) ∈ (𝐺𝑋) ∧ ¬ (𝐺𝑋) ∈ (𝐺𝑋)) → ¬ (𝐹𝑋) = (𝐺𝑋))
6756, 65, 66syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐹𝑋) = (𝐺𝑋))
68 eleq2 2820 . . . . . . . . . 10 (𝑤 = 𝑋 → (𝑧𝑤𝑧𝑋))
69 fveq2 6822 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐹𝑤) = (𝐹𝑋))
70 fveq2 6822 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐺𝑤) = (𝐺𝑋))
7169, 70eqeq12d 2747 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑋) = (𝐺𝑋)))
7268, 71imbi12d 344 . . . . . . . . 9 (𝑤 = 𝑋 → ((𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋))))
7372, 57, 46rspcdva 3573 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋)))
7467, 73mtod 198 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ 𝑧𝑋)
75 ssexg 5259 . . . . . . . . . . 11 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵𝐵 ∈ On) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
7610, 12, 75sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
77 ssonuni 7713 . . . . . . . . . 10 ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On))
7876, 15, 77sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On)
7911, 78eqeltrid 2835 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ On)
80 onelon 6331 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ∈ On)
8112, 39, 80syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ On)
82 ontri1 6340 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑧 ∈ On) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8379, 81, 82syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8474, 83mpbird 257 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝑧)
85 elssuni 4887 . . . . . . . 8 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
8685, 11sseqtrrdi 3971 . . . . . . 7 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧𝑋)
8741, 86syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝑋)
8884, 87eqssd 3947 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 = 𝑧)
89 eleq1 2819 . . . . . . 7 (𝑋 = 𝑧 → (𝑋𝑤𝑧𝑤))
9089imbi1d 341 . . . . . 6 (𝑋 = 𝑧 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9190ralbidv 3155 . . . . 5 (𝑋 = 𝑧 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9288, 91syl 17 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9357, 92mpbird 257 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
9446, 56, 933jca 1128 . 2 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
959, 94rexlimddv 3139 1 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280   cuni 4856   class class class wbr 5089  {copab 5151  dom cdm 5614  Ord word 6305  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346   supp csupp 8090  Fincfn 8869   finSupp cfsupp 9245   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-map 8752  df-en 8870  df-fin 8873  df-fsupp 9246  df-cnf 9552
This theorem is referenced by:  cantnflem1a  9575  cantnflem1b  9576  cantnflem1c  9577  cantnflem1d  9578  cantnflem1  9579
  Copyright terms: Public domain W3C validator