MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oemapvali Structured version   Visualization version   GIF version

Theorem oemapvali 9213
Description: If 𝐹 < 𝐺, then there is some 𝑧 witnessing this, but we can say more and in fact there is a definable expression 𝑋 that also witnesses 𝐹 < 𝐺. (Contributed by Mario Carneiro, 25-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
oemapval.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
oemapval.f (𝜑𝐹𝑆)
oemapval.g (𝜑𝐺𝑆)
oemapvali.r (𝜑𝐹𝑇𝐺)
oemapvali.x 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
Assertion
Ref Expression
oemapvali (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Distinct variable groups:   𝑤,𝑐,𝑥,𝑦,𝑧,𝐵   𝐴,𝑐,𝑤,𝑥,𝑦,𝑧   𝑇,𝑐   𝑤,𝐹,𝑥,𝑦,𝑧   𝑆,𝑐,𝑥,𝑦,𝑧   𝐺,𝑐,𝑤,𝑥,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑤,𝑋,𝑥,𝑦,𝑧   𝐹,𝑐   𝜑,𝑐
Allowed substitution hints:   𝜑(𝑤)   𝑆(𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤)   𝑋(𝑐)

Proof of Theorem oemapvali
StepHypRef Expression
1 oemapvali.r . . 3 (𝜑𝐹𝑇𝐺)
2 cantnfs.s . . . 4 𝑆 = dom (𝐴 CNF 𝐵)
3 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
4 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
5 oemapval.t . . . 4 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝐵 ((𝑥𝑧) ∈ (𝑦𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝑥𝑤) = (𝑦𝑤)))}
6 oemapval.f . . . 4 (𝜑𝐹𝑆)
7 oemapval.g . . . 4 (𝜑𝐺𝑆)
82, 3, 4, 5, 6, 7oemapval 9212 . . 3 (𝜑 → (𝐹𝑇𝐺 ↔ ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))))
91, 8mpbid 235 . 2 (𝜑 → ∃𝑧𝐵 ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
10 ssrab2 3967 . . . 4 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵
11 oemapvali.x . . . . 5 𝑋 = {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)}
124adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ∈ On)
13 onss 7518 . . . . . . . 8 (𝐵 ∈ On → 𝐵 ⊆ On)
1412, 13syl 17 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐵 ⊆ On)
1510, 14sstrid 3886 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On)
162, 3, 4cantnfs 9195 . . . . . . . . . 10 (𝜑 → (𝐺𝑆 ↔ (𝐺:𝐵𝐴𝐺 finSupp ∅)))
177, 16mpbid 235 . . . . . . . . 9 (𝜑 → (𝐺:𝐵𝐴𝐺 finSupp ∅))
1817simprd 499 . . . . . . . 8 (𝜑𝐺 finSupp ∅)
1918adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺 finSupp ∅)
2043ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐵 ∈ On)
21 simp2 1138 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐𝐵)
2217simpld 498 . . . . . . . . . . . 12 (𝜑𝐺:𝐵𝐴)
2322ffnd 6499 . . . . . . . . . . 11 (𝜑𝐺 Fn 𝐵)
24233ad2ant1 1134 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝐺 Fn 𝐵)
25 ne0i 4221 . . . . . . . . . . 11 ((𝐹𝑐) ∈ (𝐺𝑐) → (𝐺𝑐) ≠ ∅)
26253ad2ant3 1136 . . . . . . . . . 10 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → (𝐺𝑐) ≠ ∅)
27 fvn0elsupp 7868 . . . . . . . . . 10 (((𝐵 ∈ On ∧ 𝑐𝐵) ∧ (𝐺 Fn 𝐵 ∧ (𝐺𝑐) ≠ ∅)) → 𝑐 ∈ (𝐺 supp ∅))
2820, 21, 24, 26, 27syl22anc 838 . . . . . . . . 9 ((𝜑𝑐𝐵 ∧ (𝐹𝑐) ∈ (𝐺𝑐)) → 𝑐 ∈ (𝐺 supp ∅))
2928rabssdv 3962 . . . . . . . 8 (𝜑 → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
3029adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅))
31 fsuppimp 8905 . . . . . . . 8 (𝐺 finSupp ∅ → (Fun 𝐺 ∧ (𝐺 supp ∅) ∈ Fin))
32 ssfi 8765 . . . . . . . . 9 (((𝐺 supp ∅) ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅)) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
3332ex 416 . . . . . . . 8 ((𝐺 supp ∅) ∈ Fin → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3431, 33simpl2im 507 . . . . . . 7 (𝐺 finSupp ∅ → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ (𝐺 supp ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin))
3519, 30, 34sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin)
36 fveq2 6668 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐹𝑐) = (𝐹𝑧))
37 fveq2 6668 . . . . . . . . 9 (𝑐 = 𝑧 → (𝐺𝑐) = (𝐺𝑧))
3836, 37eleq12d 2827 . . . . . . . 8 (𝑐 = 𝑧 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑧) ∈ (𝐺𝑧)))
39 simprl 771 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝐵)
40 simprrl 781 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑧) ∈ (𝐺𝑧))
4138, 39, 40elrabd 3587 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4241ne0d 4222 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅)
43 ordunifi 8835 . . . . . 6 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ Fin ∧ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ≠ ∅) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4415, 35, 42, 43syl3anc 1372 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4511, 44eqeltrid 2837 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
4610, 45sseldi 3873 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝐵)
47 fveq2 6668 . . . . . . 7 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
48 fveq2 6668 . . . . . . 7 (𝑥 = 𝑋 → (𝐺𝑥) = (𝐺𝑋))
4947, 48eleq12d 2827 . . . . . 6 (𝑥 = 𝑋 → ((𝐹𝑥) ∈ (𝐺𝑥) ↔ (𝐹𝑋) ∈ (𝐺𝑋)))
50 fveq2 6668 . . . . . . . 8 (𝑐 = 𝑥 → (𝐹𝑐) = (𝐹𝑥))
51 fveq2 6668 . . . . . . . 8 (𝑐 = 𝑥 → (𝐺𝑐) = (𝐺𝑥))
5250, 51eleq12d 2827 . . . . . . 7 (𝑐 = 𝑥 → ((𝐹𝑐) ∈ (𝐺𝑐) ↔ (𝐹𝑥) ∈ (𝐺𝑥)))
5352cbvrabv 3392 . . . . . 6 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} = {𝑥𝐵 ∣ (𝐹𝑥) ∈ (𝐺𝑥)}
5449, 53elrab2 3588 . . . . 5 (𝑋 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ↔ (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5545, 54sylib 221 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋)))
5655simprd 499 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐹𝑋) ∈ (𝐺𝑋))
57 simprrr 782 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)))
583adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐴 ∈ On)
5922adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝐺:𝐵𝐴)
6059, 46ffvelrnd 6856 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ 𝐴)
61 onelon 6191 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐺𝑋) ∈ 𝐴) → (𝐺𝑋) ∈ On)
6258, 60, 61syl2anc 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝐺𝑋) ∈ On)
63 eloni 6176 . . . . . . . . . 10 ((𝐺𝑋) ∈ On → Ord (𝐺𝑋))
64 ordirr 6184 . . . . . . . . . 10 (Ord (𝐺𝑋) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
6562, 63, 643syl 18 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐺𝑋) ∈ (𝐺𝑋))
66 nelneq 2857 . . . . . . . . 9 (((𝐹𝑋) ∈ (𝐺𝑋) ∧ ¬ (𝐺𝑋) ∈ (𝐺𝑋)) → ¬ (𝐹𝑋) = (𝐺𝑋))
6756, 65, 66syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ (𝐹𝑋) = (𝐺𝑋))
68 eleq2 2821 . . . . . . . . . 10 (𝑤 = 𝑋 → (𝑧𝑤𝑧𝑋))
69 fveq2 6668 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐹𝑤) = (𝐹𝑋))
70 fveq2 6668 . . . . . . . . . . 11 (𝑤 = 𝑋 → (𝐺𝑤) = (𝐺𝑋))
7169, 70eqeq12d 2754 . . . . . . . . . 10 (𝑤 = 𝑋 → ((𝐹𝑤) = (𝐺𝑤) ↔ (𝐹𝑋) = (𝐺𝑋)))
7268, 71imbi12d 348 . . . . . . . . 9 (𝑤 = 𝑋 → ((𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋))))
7372, 57, 46rspcdva 3526 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑧𝑋 → (𝐹𝑋) = (𝐺𝑋)))
7467, 73mtod 201 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ¬ 𝑧𝑋)
75 ssexg 5188 . . . . . . . . . . 11 (({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ 𝐵𝐵 ∈ On) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
7610, 12, 75sylancr 590 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V)
77 ssonuni 7514 . . . . . . . . . 10 ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ V → ({𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ⊆ On → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On))
7876, 15, 77sylc 65 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} ∈ On)
7911, 78eqeltrid 2837 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 ∈ On)
80 onelon 6191 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ∈ On)
8112, 39, 80syl2anc 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧 ∈ On)
82 ontri1 6200 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑧 ∈ On) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8379, 81, 82syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝑧 ↔ ¬ 𝑧𝑋))
8474, 83mpbird 260 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋𝑧)
85 elssuni 4825 . . . . . . . 8 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧 {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)})
8685, 11sseqtrrdi 3926 . . . . . . 7 (𝑧 ∈ {𝑐𝐵 ∣ (𝐹𝑐) ∈ (𝐺𝑐)} → 𝑧𝑋)
8741, 86syl 17 . . . . . 6 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑧𝑋)
8884, 87eqssd 3892 . . . . 5 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → 𝑋 = 𝑧)
89 eleq1 2820 . . . . . . 7 (𝑋 = 𝑧 → (𝑋𝑤𝑧𝑤))
9089imbi1d 345 . . . . . 6 (𝑋 = 𝑧 → ((𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9190ralbidv 3109 . . . . 5 (𝑋 = 𝑧 → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9288, 91syl 17 . . . 4 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)) ↔ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))
9357, 92mpbird 260 . . 3 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤)))
9446, 56, 933jca 1129 . 2 ((𝜑 ∧ (𝑧𝐵 ∧ ((𝐹𝑧) ∈ (𝐺𝑧) ∧ ∀𝑤𝐵 (𝑧𝑤 → (𝐹𝑤) = (𝐺𝑤))))) → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
959, 94rexlimddv 3200 1 (𝜑 → (𝑋𝐵 ∧ (𝐹𝑋) ∈ (𝐺𝑋) ∧ ∀𝑤𝐵 (𝑋𝑤 → (𝐹𝑤) = (𝐺𝑤))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wrex 3054  {crab 3057  Vcvv 3397  wss 3841  c0 4209   cuni 4793   class class class wbr 5027  {copab 5089  dom cdm 5519  Ord word 6165  Oncon0 6166  Fun wfun 6327   Fn wfn 6328  wf 6329  cfv 6333  (class class class)co 7164   supp csupp 7849  Fincfn 8548   finSupp cfsupp 8899   CNF ccnf 9190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-supp 7850  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-seqom 8106  df-1o 8124  df-map 8432  df-en 8549  df-fin 8552  df-fsupp 8900  df-cnf 9191
This theorem is referenced by:  cantnflem1a  9214  cantnflem1b  9215  cantnflem1c  9216  cantnflem1d  9217  cantnflem1  9218
  Copyright terms: Public domain W3C validator