Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   GIF version

Theorem climlimsupcex 45815
Description: Counterexample for climlimsup 45806, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11024 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1 ¬ 𝑀 ∈ ℤ
climlimsupcex.2 𝑍 = (ℤ𝑀)
climlimsupcex.3 𝐹 = ∅
Assertion
Ref Expression
climlimsupcex ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6704 . . . 4 ∅:∅⟶ℝ
2 climlimsupcex.3 . . . . 5 𝐹 = ∅
3 climlimsupcex.2 . . . . . 6 𝑍 = (ℤ𝑀)
4 climlimsupcex.1 . . . . . . 7 ¬ 𝑀 ∈ ℤ
5 uz0 45458 . . . . . . 7 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
64, 5ax-mp 5 . . . . . 6 (ℤ𝑀) = ∅
73, 6eqtri 2754 . . . . 5 𝑍 = ∅
82, 7feq12i 6644 . . . 4 (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ)
91, 8mpbir 231 . . 3 𝐹:𝑍⟶ℝ
109a1i 11 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ)
11 climrel 15399 . . . . 5 Rel ⇝
1211a1i 11 . . . 4 (∅ ∈ ℂ → Rel ⇝ )
13 0cnv 45788 . . . . 5 (∅ ∈ ℂ → ∅ ⇝ ∅)
142, 13eqbrtrid 5124 . . . 4 (∅ ∈ ℂ → 𝐹 ⇝ ∅)
15 releldm 5883 . . . 4 ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ )
1612, 14, 15syl2anc 584 . . 3 (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ )
1716adantr 480 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ )
1813adantr 480 . . . 4 ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
1918adantlr 715 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
20 simpr 484 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅)
212fveq2i 6825 . . . . . . . . . 10 (lim sup‘𝐹) = (lim sup‘∅)
22 limsup0 45740 . . . . . . . . . 10 (lim sup‘∅) = -∞
2321, 22eqtri 2754 . . . . . . . . 9 (lim sup‘𝐹) = -∞
242, 23breq12i 5098 . . . . . . . 8 (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞)
2524biimpi 216 . . . . . . 7 (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞)
2625adantr 480 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞)
27 climuni 15459 . . . . . 6 ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞)
2820, 26, 27syl2anc 584 . . . . 5 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞)
2928adantll 714 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞)
30 nelneq 2855 . . . . 5 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞)
3130ad2antrr 726 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞)
3229, 31pm2.65da 816 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅)
3319, 32pm2.65da 816 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹))
3410, 17, 333jca 1128 1 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  c0 4280   class class class wbr 5089  dom cdm 5614  Rel wrel 5619  wf 6477  cfv 6481  cc 11004  cr 11005  -∞cmnf 11144  cz 12468  cuz 12732  lim supclsp 15377  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator