Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version |
Description: Counterexample for climlimsup 43301, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 10889 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climlimsupcex.1 | ⊢ ¬ 𝑀 ∈ ℤ |
climlimsupcex.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlimsupcex.3 | ⊢ 𝐹 = ∅ |
Ref | Expression |
---|---|
climlimsupcex | ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6655 | . . . 4 ⊢ ∅:∅⟶ℝ | |
2 | climlimsupcex.3 | . . . . 5 ⊢ 𝐹 = ∅ | |
3 | climlimsupcex.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climlimsupcex.1 | . . . . . . 7 ⊢ ¬ 𝑀 ∈ ℤ | |
5 | uz0 42952 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = ∅ |
7 | 3, 6 | eqtri 2766 | . . . . 5 ⊢ 𝑍 = ∅ |
8 | 2, 7 | feq12i 6593 | . . . 4 ⊢ (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ) |
9 | 1, 8 | mpbir 230 | . . 3 ⊢ 𝐹:𝑍⟶ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ) |
11 | climrel 15201 | . . . . 5 ⊢ Rel ⇝ | |
12 | 11 | a1i 11 | . . . 4 ⊢ (∅ ∈ ℂ → Rel ⇝ ) |
13 | 0cnv 43283 | . . . . 5 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | |
14 | 2, 13 | eqbrtrid 5109 | . . . 4 ⊢ (∅ ∈ ℂ → 𝐹 ⇝ ∅) |
15 | releldm 5853 | . . . 4 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ ) | |
16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
17 | 16 | adantr 481 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ ) |
18 | 13 | adantr 481 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
19 | 18 | adantlr 712 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
20 | simpr 485 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅) | |
21 | 2 | fveq2i 6777 | . . . . . . . . . 10 ⊢ (lim sup‘𝐹) = (lim sup‘∅) |
22 | limsup0 43235 | . . . . . . . . . 10 ⊢ (lim sup‘∅) = -∞ | |
23 | 21, 22 | eqtri 2766 | . . . . . . . . 9 ⊢ (lim sup‘𝐹) = -∞ |
24 | 2, 23 | breq12i 5083 | . . . . . . . 8 ⊢ (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞) |
25 | 24 | biimpi 215 | . . . . . . 7 ⊢ (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞) |
26 | 25 | adantr 481 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞) |
27 | climuni 15261 | . . . . . 6 ⊢ ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞) | |
28 | 20, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
29 | 28 | adantll 711 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
30 | nelneq 2863 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞) | |
31 | 30 | ad2antrr 723 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞) |
32 | 29, 31 | pm2.65da 814 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅) |
33 | 19, 32 | pm2.65da 814 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹)) |
34 | 10, 17, 33 | 3jca 1127 | 1 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∅c0 4256 class class class wbr 5074 dom cdm 5589 Rel wrel 5594 ⟶wf 6429 ‘cfv 6433 ℂcc 10869 ℝcr 10870 -∞cmnf 11007 ℤcz 12319 ℤ≥cuz 12582 lim supclsp 15179 ⇝ cli 15193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |