Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   GIF version

Theorem climlimsupcex 43200
Description: Counterexample for climlimsup 43191, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 10820 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1 ¬ 𝑀 ∈ ℤ
climlimsupcex.2 𝑍 = (ℤ𝑀)
climlimsupcex.3 𝐹 = ∅
Assertion
Ref Expression
climlimsupcex ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6639 . . . 4 ∅:∅⟶ℝ
2 climlimsupcex.3 . . . . 5 𝐹 = ∅
3 climlimsupcex.2 . . . . . 6 𝑍 = (ℤ𝑀)
4 climlimsupcex.1 . . . . . . 7 ¬ 𝑀 ∈ ℤ
5 uz0 42842 . . . . . . 7 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
64, 5ax-mp 5 . . . . . 6 (ℤ𝑀) = ∅
73, 6eqtri 2766 . . . . 5 𝑍 = ∅
82, 7feq12i 6577 . . . 4 (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ)
91, 8mpbir 230 . . 3 𝐹:𝑍⟶ℝ
109a1i 11 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ)
11 climrel 15129 . . . . 5 Rel ⇝
1211a1i 11 . . . 4 (∅ ∈ ℂ → Rel ⇝ )
13 0cnv 43173 . . . . 5 (∅ ∈ ℂ → ∅ ⇝ ∅)
142, 13eqbrtrid 5105 . . . 4 (∅ ∈ ℂ → 𝐹 ⇝ ∅)
15 releldm 5842 . . . 4 ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ )
1612, 14, 15syl2anc 583 . . 3 (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ )
1716adantr 480 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ )
1813adantr 480 . . . 4 ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
1918adantlr 711 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
20 simpr 484 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅)
212fveq2i 6759 . . . . . . . . . 10 (lim sup‘𝐹) = (lim sup‘∅)
22 limsup0 43125 . . . . . . . . . 10 (lim sup‘∅) = -∞
2321, 22eqtri 2766 . . . . . . . . 9 (lim sup‘𝐹) = -∞
242, 23breq12i 5079 . . . . . . . 8 (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞)
2524biimpi 215 . . . . . . 7 (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞)
2625adantr 480 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞)
27 climuni 15189 . . . . . 6 ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞)
2820, 26, 27syl2anc 583 . . . . 5 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞)
2928adantll 710 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞)
30 nelneq 2863 . . . . 5 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞)
3130ad2antrr 722 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞)
3229, 31pm2.65da 813 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅)
3319, 32pm2.65da 813 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹))
3410, 17, 333jca 1126 1 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  c0 4253   class class class wbr 5070  dom cdm 5580  Rel wrel 5585  wf 6414  cfv 6418  cc 10800  cr 10801  -∞cmnf 10938  cz 12249  cuz 12511  lim supclsp 15107  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator