| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version | ||
| Description: Counterexample for climlimsup 45741, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11027 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climlimsupcex.1 | ⊢ ¬ 𝑀 ∈ ℤ |
| climlimsupcex.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climlimsupcex.3 | ⊢ 𝐹 = ∅ |
| Ref | Expression |
|---|---|
| climlimsupcex | ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6705 | . . . 4 ⊢ ∅:∅⟶ℝ | |
| 2 | climlimsupcex.3 | . . . . 5 ⊢ 𝐹 = ∅ | |
| 3 | climlimsupcex.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | climlimsupcex.1 | . . . . . . 7 ⊢ ¬ 𝑀 ∈ ℤ | |
| 5 | uz0 45391 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = ∅ |
| 7 | 3, 6 | eqtri 2752 | . . . . 5 ⊢ 𝑍 = ∅ |
| 8 | 2, 7 | feq12i 6645 | . . . 4 ⊢ (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ) |
| 9 | 1, 8 | mpbir 231 | . . 3 ⊢ 𝐹:𝑍⟶ℝ |
| 10 | 9 | a1i 11 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ) |
| 11 | climrel 15399 | . . . . 5 ⊢ Rel ⇝ | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∅ ∈ ℂ → Rel ⇝ ) |
| 13 | 0cnv 45723 | . . . . 5 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | |
| 14 | 2, 13 | eqbrtrid 5127 | . . . 4 ⊢ (∅ ∈ ℂ → 𝐹 ⇝ ∅) |
| 15 | releldm 5886 | . . . 4 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ ) | |
| 16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ ) |
| 18 | 13 | adantr 480 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 19 | 18 | adantlr 715 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅) | |
| 21 | 2 | fveq2i 6825 | . . . . . . . . . 10 ⊢ (lim sup‘𝐹) = (lim sup‘∅) |
| 22 | limsup0 45675 | . . . . . . . . . 10 ⊢ (lim sup‘∅) = -∞ | |
| 23 | 21, 22 | eqtri 2752 | . . . . . . . . 9 ⊢ (lim sup‘𝐹) = -∞ |
| 24 | 2, 23 | breq12i 5101 | . . . . . . . 8 ⊢ (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞) |
| 25 | 24 | biimpi 216 | . . . . . . 7 ⊢ (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞) |
| 27 | climuni 15459 | . . . . . 6 ⊢ ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞) | |
| 28 | 20, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 29 | 28 | adantll 714 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 30 | nelneq 2852 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞) | |
| 31 | 30 | ad2antrr 726 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞) |
| 32 | 29, 31 | pm2.65da 816 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅) |
| 33 | 19, 32 | pm2.65da 816 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹)) |
| 34 | 10, 17, 33 | 3jca 1128 | 1 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4284 class class class wbr 5092 dom cdm 5619 Rel wrel 5624 ⟶wf 6478 ‘cfv 6482 ℂcc 11007 ℝcr 11008 -∞cmnf 11147 ℤcz 12471 ℤ≥cuz 12735 lim supclsp 15377 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |