![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version |
Description: Counterexample for climlimsup 45681, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11202 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climlimsupcex.1 | ⊢ ¬ 𝑀 ∈ ℤ |
climlimsupcex.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climlimsupcex.3 | ⊢ 𝐹 = ∅ |
Ref | Expression |
---|---|
climlimsupcex | ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6802 | . . . 4 ⊢ ∅:∅⟶ℝ | |
2 | climlimsupcex.3 | . . . . 5 ⊢ 𝐹 = ∅ | |
3 | climlimsupcex.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climlimsupcex.1 | . . . . . . 7 ⊢ ¬ 𝑀 ∈ ℤ | |
5 | uz0 45327 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = ∅ |
7 | 3, 6 | eqtri 2768 | . . . . 5 ⊢ 𝑍 = ∅ |
8 | 2, 7 | feq12i 6740 | . . . 4 ⊢ (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ) |
9 | 1, 8 | mpbir 231 | . . 3 ⊢ 𝐹:𝑍⟶ℝ |
10 | 9 | a1i 11 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ) |
11 | climrel 15538 | . . . . 5 ⊢ Rel ⇝ | |
12 | 11 | a1i 11 | . . . 4 ⊢ (∅ ∈ ℂ → Rel ⇝ ) |
13 | 0cnv 45663 | . . . . 5 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | |
14 | 2, 13 | eqbrtrid 5201 | . . . 4 ⊢ (∅ ∈ ℂ → 𝐹 ⇝ ∅) |
15 | releldm 5969 | . . . 4 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ ) | |
16 | 12, 14, 15 | syl2anc 583 | . . 3 ⊢ (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
17 | 16 | adantr 480 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ ) |
18 | 13 | adantr 480 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
19 | 18 | adantlr 714 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
20 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅) | |
21 | 2 | fveq2i 6923 | . . . . . . . . . 10 ⊢ (lim sup‘𝐹) = (lim sup‘∅) |
22 | limsup0 45615 | . . . . . . . . . 10 ⊢ (lim sup‘∅) = -∞ | |
23 | 21, 22 | eqtri 2768 | . . . . . . . . 9 ⊢ (lim sup‘𝐹) = -∞ |
24 | 2, 23 | breq12i 5175 | . . . . . . . 8 ⊢ (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞) |
25 | 24 | biimpi 216 | . . . . . . 7 ⊢ (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞) |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞) |
27 | climuni 15598 | . . . . . 6 ⊢ ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞) | |
28 | 20, 26, 27 | syl2anc 583 | . . . . 5 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
29 | 28 | adantll 713 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
30 | nelneq 2868 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞) | |
31 | 30 | ad2antrr 725 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞) |
32 | 29, 31 | pm2.65da 816 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅) |
33 | 19, 32 | pm2.65da 816 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹)) |
34 | 10, 17, 33 | 3jca 1128 | 1 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∅c0 4352 class class class wbr 5166 dom cdm 5700 Rel wrel 5705 ⟶wf 6569 ‘cfv 6573 ℂcc 11182 ℝcr 11183 -∞cmnf 11322 ℤcz 12639 ℤ≥cuz 12903 lim supclsp 15516 ⇝ cli 15530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-limsup 15517 df-clim 15534 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |