![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version |
Description: Counterexample for climlimsup 44466, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11127 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
climlimsupcex.1 | β’ Β¬ π β β€ |
climlimsupcex.2 | β’ π = (β€β₯βπ) |
climlimsupcex.3 | β’ πΉ = β |
Ref | Expression |
---|---|
climlimsupcex | β’ ((β β β β§ Β¬ -β β β) β (πΉ:πβΆβ β§ πΉ β dom β β§ Β¬ πΉ β (lim supβπΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 6772 | . . . 4 β’ β :β βΆβ | |
2 | climlimsupcex.3 | . . . . 5 β’ πΉ = β | |
3 | climlimsupcex.2 | . . . . . 6 β’ π = (β€β₯βπ) | |
4 | climlimsupcex.1 | . . . . . . 7 β’ Β¬ π β β€ | |
5 | uz0 44112 | . . . . . . 7 β’ (Β¬ π β β€ β (β€β₯βπ) = β ) | |
6 | 4, 5 | ax-mp 5 | . . . . . 6 β’ (β€β₯βπ) = β |
7 | 3, 6 | eqtri 2760 | . . . . 5 β’ π = β |
8 | 2, 7 | feq12i 6710 | . . . 4 β’ (πΉ:πβΆβ β β :β βΆβ) |
9 | 1, 8 | mpbir 230 | . . 3 β’ πΉ:πβΆβ |
10 | 9 | a1i 11 | . 2 β’ ((β β β β§ Β¬ -β β β) β πΉ:πβΆβ) |
11 | climrel 15435 | . . . . 5 β’ Rel β | |
12 | 11 | a1i 11 | . . . 4 β’ (β β β β Rel β ) |
13 | 0cnv 44448 | . . . . 5 β’ (β β β β β β β ) | |
14 | 2, 13 | eqbrtrid 5183 | . . . 4 β’ (β β β β πΉ β β ) |
15 | releldm 5943 | . . . 4 β’ ((Rel β β§ πΉ β β ) β πΉ β dom β ) | |
16 | 12, 14, 15 | syl2anc 584 | . . 3 β’ (β β β β πΉ β dom β ) |
17 | 16 | adantr 481 | . 2 β’ ((β β β β§ Β¬ -β β β) β πΉ β dom β ) |
18 | 13 | adantr 481 | . . . 4 β’ ((β β β β§ πΉ β (lim supβπΉ)) β β β β ) |
19 | 18 | adantlr 713 | . . 3 β’ (((β β β β§ Β¬ -β β β) β§ πΉ β (lim supβπΉ)) β β β β ) |
20 | simpr 485 | . . . . . 6 β’ ((πΉ β (lim supβπΉ) β§ β β β ) β β β β ) | |
21 | 2 | fveq2i 6894 | . . . . . . . . . 10 β’ (lim supβπΉ) = (lim supββ ) |
22 | limsup0 44400 | . . . . . . . . . 10 β’ (lim supββ ) = -β | |
23 | 21, 22 | eqtri 2760 | . . . . . . . . 9 β’ (lim supβπΉ) = -β |
24 | 2, 23 | breq12i 5157 | . . . . . . . 8 β’ (πΉ β (lim supβπΉ) β β β -β) |
25 | 24 | biimpi 215 | . . . . . . 7 β’ (πΉ β (lim supβπΉ) β β β -β) |
26 | 25 | adantr 481 | . . . . . 6 β’ ((πΉ β (lim supβπΉ) β§ β β β ) β β β -β) |
27 | climuni 15495 | . . . . . 6 β’ ((β β β β§ β β -β) β β = -β) | |
28 | 20, 26, 27 | syl2anc 584 | . . . . 5 β’ ((πΉ β (lim supβπΉ) β§ β β β ) β β = -β) |
29 | 28 | adantll 712 | . . . 4 β’ ((((β β β β§ Β¬ -β β β) β§ πΉ β (lim supβπΉ)) β§ β β β ) β β = -β) |
30 | nelneq 2857 | . . . . 5 β’ ((β β β β§ Β¬ -β β β) β Β¬ β = -β) | |
31 | 30 | ad2antrr 724 | . . . 4 β’ ((((β β β β§ Β¬ -β β β) β§ πΉ β (lim supβπΉ)) β§ β β β ) β Β¬ β = -β) |
32 | 29, 31 | pm2.65da 815 | . . 3 β’ (((β β β β§ Β¬ -β β β) β§ πΉ β (lim supβπΉ)) β Β¬ β β β ) |
33 | 19, 32 | pm2.65da 815 | . 2 β’ ((β β β β§ Β¬ -β β β) β Β¬ πΉ β (lim supβπΉ)) |
34 | 10, 17, 33 | 3jca 1128 | 1 β’ ((β β β β§ Β¬ -β β β) β (πΉ:πβΆβ β§ πΉ β dom β β§ Β¬ πΉ β (lim supβπΉ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β c0 4322 class class class wbr 5148 dom cdm 5676 Rel wrel 5681 βΆwf 6539 βcfv 6543 βcc 11107 βcr 11108 -βcmnf 11245 β€cz 12557 β€β₯cuz 12821 lim supclsp 15413 β cli 15427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-sup 9436 df-inf 9437 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12974 df-seq 13966 df-exp 14027 df-cj 15045 df-re 15046 df-im 15047 df-sqrt 15181 df-abs 15182 df-limsup 15414 df-clim 15431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |