| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version | ||
| Description: Counterexample for climlimsup 45731, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11062 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climlimsupcex.1 | ⊢ ¬ 𝑀 ∈ ℤ |
| climlimsupcex.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climlimsupcex.3 | ⊢ 𝐹 = ∅ |
| Ref | Expression |
|---|---|
| climlimsupcex | ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6723 | . . . 4 ⊢ ∅:∅⟶ℝ | |
| 2 | climlimsupcex.3 | . . . . 5 ⊢ 𝐹 = ∅ | |
| 3 | climlimsupcex.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | climlimsupcex.1 | . . . . . . 7 ⊢ ¬ 𝑀 ∈ ℤ | |
| 5 | uz0 45381 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = ∅ |
| 7 | 3, 6 | eqtri 2752 | . . . . 5 ⊢ 𝑍 = ∅ |
| 8 | 2, 7 | feq12i 6663 | . . . 4 ⊢ (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ) |
| 9 | 1, 8 | mpbir 231 | . . 3 ⊢ 𝐹:𝑍⟶ℝ |
| 10 | 9 | a1i 11 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ) |
| 11 | climrel 15434 | . . . . 5 ⊢ Rel ⇝ | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∅ ∈ ℂ → Rel ⇝ ) |
| 13 | 0cnv 45713 | . . . . 5 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | |
| 14 | 2, 13 | eqbrtrid 5137 | . . . 4 ⊢ (∅ ∈ ℂ → 𝐹 ⇝ ∅) |
| 15 | releldm 5897 | . . . 4 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ ) | |
| 16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ ) |
| 18 | 13 | adantr 480 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 19 | 18 | adantlr 715 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅) | |
| 21 | 2 | fveq2i 6843 | . . . . . . . . . 10 ⊢ (lim sup‘𝐹) = (lim sup‘∅) |
| 22 | limsup0 45665 | . . . . . . . . . 10 ⊢ (lim sup‘∅) = -∞ | |
| 23 | 21, 22 | eqtri 2752 | . . . . . . . . 9 ⊢ (lim sup‘𝐹) = -∞ |
| 24 | 2, 23 | breq12i 5111 | . . . . . . . 8 ⊢ (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞) |
| 25 | 24 | biimpi 216 | . . . . . . 7 ⊢ (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞) |
| 27 | climuni 15494 | . . . . . 6 ⊢ ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞) | |
| 28 | 20, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 29 | 28 | adantll 714 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 30 | nelneq 2852 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞) | |
| 31 | 30 | ad2antrr 726 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞) |
| 32 | 29, 31 | pm2.65da 816 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅) |
| 33 | 19, 32 | pm2.65da 816 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹)) |
| 34 | 10, 17, 33 | 3jca 1128 | 1 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4292 class class class wbr 5102 dom cdm 5631 Rel wrel 5636 ⟶wf 6495 ‘cfv 6499 ℂcc 11042 ℝcr 11043 -∞cmnf 11182 ℤcz 12505 ℤ≥cuz 12769 lim supclsp 15412 ⇝ cli 15426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-rp 12928 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15413 df-clim 15430 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |