Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   GIF version

Theorem climlimsupcex 42043
Description: Counterexample for climlimsup 42034, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 10549 and its comment) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1 ¬ 𝑀 ∈ ℤ
climlimsupcex.2 𝑍 = (ℤ𝑀)
climlimsupcex.3 𝐹 = ∅
Assertion
Ref Expression
climlimsupcex ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6554 . . . 4 ∅:∅⟶ℝ
2 climlimsupcex.3 . . . . 5 𝐹 = ∅
3 climlimsupcex.2 . . . . . 6 𝑍 = (ℤ𝑀)
4 climlimsupcex.1 . . . . . . 7 ¬ 𝑀 ∈ ℤ
5 uz0 41679 . . . . . . 7 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
64, 5ax-mp 5 . . . . . 6 (ℤ𝑀) = ∅
73, 6eqtri 2844 . . . . 5 𝑍 = ∅
82, 7feq12i 6501 . . . 4 (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ)
91, 8mpbir 233 . . 3 𝐹:𝑍⟶ℝ
109a1i 11 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ)
11 climrel 14843 . . . . 5 Rel ⇝
1211a1i 11 . . . 4 (∅ ∈ ℂ → Rel ⇝ )
13 0cnv 42016 . . . . 5 (∅ ∈ ℂ → ∅ ⇝ ∅)
142, 13eqbrtrid 5093 . . . 4 (∅ ∈ ℂ → 𝐹 ⇝ ∅)
15 releldm 5808 . . . 4 ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ )
1612, 14, 15syl2anc 586 . . 3 (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ )
1716adantr 483 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ )
1813adantr 483 . . . 4 ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
1918adantlr 713 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
20 simpr 487 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅)
212fveq2i 6667 . . . . . . . . . 10 (lim sup‘𝐹) = (lim sup‘∅)
22 limsup0 41968 . . . . . . . . . 10 (lim sup‘∅) = -∞
2321, 22eqtri 2844 . . . . . . . . 9 (lim sup‘𝐹) = -∞
242, 23breq12i 5067 . . . . . . . 8 (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞)
2524biimpi 218 . . . . . . 7 (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞)
2625adantr 483 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞)
27 climuni 14903 . . . . . 6 ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞)
2820, 26, 27syl2anc 586 . . . . 5 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞)
2928adantll 712 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞)
30 nelneq 2937 . . . . 5 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞)
3130ad2antrr 724 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞)
3229, 31pm2.65da 815 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅)
3319, 32pm2.65da 815 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹))
3410, 17, 333jca 1124 1 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  c0 4290   class class class wbr 5058  dom cdm 5549  Rel wrel 5554  wf 6345  cfv 6349  cc 10529  cr 10530  -∞cmnf 10667  cz 11975  cuz 12237  lim supclsp 14821  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator