Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   GIF version

Theorem climlimsupcex 45690
Description: Counterexample for climlimsup 45681, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11202 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1 ¬ 𝑀 ∈ ℤ
climlimsupcex.2 𝑍 = (ℤ𝑀)
climlimsupcex.3 𝐹 = ∅
Assertion
Ref Expression
climlimsupcex ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6802 . . . 4 ∅:∅⟶ℝ
2 climlimsupcex.3 . . . . 5 𝐹 = ∅
3 climlimsupcex.2 . . . . . 6 𝑍 = (ℤ𝑀)
4 climlimsupcex.1 . . . . . . 7 ¬ 𝑀 ∈ ℤ
5 uz0 45327 . . . . . . 7 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
64, 5ax-mp 5 . . . . . 6 (ℤ𝑀) = ∅
73, 6eqtri 2768 . . . . 5 𝑍 = ∅
82, 7feq12i 6740 . . . 4 (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ)
91, 8mpbir 231 . . 3 𝐹:𝑍⟶ℝ
109a1i 11 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ)
11 climrel 15538 . . . . 5 Rel ⇝
1211a1i 11 . . . 4 (∅ ∈ ℂ → Rel ⇝ )
13 0cnv 45663 . . . . 5 (∅ ∈ ℂ → ∅ ⇝ ∅)
142, 13eqbrtrid 5201 . . . 4 (∅ ∈ ℂ → 𝐹 ⇝ ∅)
15 releldm 5969 . . . 4 ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ )
1612, 14, 15syl2anc 583 . . 3 (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ )
1716adantr 480 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ )
1813adantr 480 . . . 4 ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
1918adantlr 714 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
20 simpr 484 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅)
212fveq2i 6923 . . . . . . . . . 10 (lim sup‘𝐹) = (lim sup‘∅)
22 limsup0 45615 . . . . . . . . . 10 (lim sup‘∅) = -∞
2321, 22eqtri 2768 . . . . . . . . 9 (lim sup‘𝐹) = -∞
242, 23breq12i 5175 . . . . . . . 8 (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞)
2524biimpi 216 . . . . . . 7 (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞)
2625adantr 480 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞)
27 climuni 15598 . . . . . 6 ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞)
2820, 26, 27syl2anc 583 . . . . 5 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞)
2928adantll 713 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞)
30 nelneq 2868 . . . . 5 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞)
3130ad2antrr 725 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞)
3229, 31pm2.65da 816 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅)
3319, 32pm2.65da 816 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹))
3410, 17, 333jca 1128 1 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  c0 4352   class class class wbr 5166  dom cdm 5700  Rel wrel 5705  wf 6569  cfv 6573  cc 11182  cr 11183  -∞cmnf 11322  cz 12639  cuz 12903  lim supclsp 15516  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator