| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climlimsupcex | Structured version Visualization version GIF version | ||
| Description: Counterexample for climlimsup 45756, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 11152 and its comment). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| climlimsupcex.1 | ⊢ ¬ 𝑀 ∈ ℤ |
| climlimsupcex.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climlimsupcex.3 | ⊢ 𝐹 = ∅ |
| Ref | Expression |
|---|---|
| climlimsupcex | ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f0 6764 | . . . 4 ⊢ ∅:∅⟶ℝ | |
| 2 | climlimsupcex.3 | . . . . 5 ⊢ 𝐹 = ∅ | |
| 3 | climlimsupcex.2 | . . . . . 6 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 4 | climlimsupcex.1 | . . . . . . 7 ⊢ ¬ 𝑀 ∈ ℤ | |
| 5 | uz0 45406 | . . . . . . 7 ⊢ (¬ 𝑀 ∈ ℤ → (ℤ≥‘𝑀) = ∅) | |
| 6 | 4, 5 | ax-mp 5 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = ∅ |
| 7 | 3, 6 | eqtri 2759 | . . . . 5 ⊢ 𝑍 = ∅ |
| 8 | 2, 7 | feq12i 6704 | . . . 4 ⊢ (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ) |
| 9 | 1, 8 | mpbir 231 | . . 3 ⊢ 𝐹:𝑍⟶ℝ |
| 10 | 9 | a1i 11 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ) |
| 11 | climrel 15513 | . . . . 5 ⊢ Rel ⇝ | |
| 12 | 11 | a1i 11 | . . . 4 ⊢ (∅ ∈ ℂ → Rel ⇝ ) |
| 13 | 0cnv 45738 | . . . . 5 ⊢ (∅ ∈ ℂ → ∅ ⇝ ∅) | |
| 14 | 2, 13 | eqbrtrid 5159 | . . . 4 ⊢ (∅ ∈ ℂ → 𝐹 ⇝ ∅) |
| 15 | releldm 5929 | . . . 4 ⊢ ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ ) | |
| 16 | 12, 14, 15 | syl2anc 584 | . . 3 ⊢ (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ ) |
| 17 | 16 | adantr 480 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ ) |
| 18 | 13 | adantr 480 | . . . 4 ⊢ ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 19 | 18 | adantlr 715 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅) |
| 20 | simpr 484 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅) | |
| 21 | 2 | fveq2i 6884 | . . . . . . . . . 10 ⊢ (lim sup‘𝐹) = (lim sup‘∅) |
| 22 | limsup0 45690 | . . . . . . . . . 10 ⊢ (lim sup‘∅) = -∞ | |
| 23 | 21, 22 | eqtri 2759 | . . . . . . . . 9 ⊢ (lim sup‘𝐹) = -∞ |
| 24 | 2, 23 | breq12i 5133 | . . . . . . . 8 ⊢ (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞) |
| 25 | 24 | biimpi 216 | . . . . . . 7 ⊢ (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞) |
| 26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞) |
| 27 | climuni 15573 | . . . . . 6 ⊢ ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞) | |
| 28 | 20, 26, 27 | syl2anc 584 | . . . . 5 ⊢ ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 29 | 28 | adantll 714 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞) |
| 30 | nelneq 2859 | . . . . 5 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞) | |
| 31 | 30 | ad2antrr 726 | . . . 4 ⊢ ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞) |
| 32 | 29, 31 | pm2.65da 816 | . . 3 ⊢ (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅) |
| 33 | 19, 32 | pm2.65da 816 | . 2 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹)) |
| 34 | 10, 17, 33 | 3jca 1128 | 1 ⊢ ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∅c0 4313 class class class wbr 5124 dom cdm 5659 Rel wrel 5664 ⟶wf 6532 ‘cfv 6536 ℂcc 11132 ℝcr 11133 -∞cmnf 11272 ℤcz 12593 ℤ≥cuz 12857 lim supclsp 15491 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-seq 14025 df-exp 14085 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |