Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climlimsupcex Structured version   Visualization version   GIF version

Theorem climlimsupcex 40796
Description: Counterexample for climlimsup 40787, showing that the first hypothesis is needed, if the empty set is a complex number (see 0ncn 10270 and its comment) (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
climlimsupcex.1 ¬ 𝑀 ∈ ℤ
climlimsupcex.2 𝑍 = (ℤ𝑀)
climlimsupcex.3 𝐹 = ∅
Assertion
Ref Expression
climlimsupcex ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))

Proof of Theorem climlimsupcex
StepHypRef Expression
1 f0 6323 . . . 4 ∅:∅⟶ℝ
2 climlimsupcex.3 . . . . 5 𝐹 = ∅
3 climlimsupcex.2 . . . . . 6 𝑍 = (ℤ𝑀)
4 climlimsupcex.1 . . . . . . 7 ¬ 𝑀 ∈ ℤ
5 uz0 40434 . . . . . . 7 𝑀 ∈ ℤ → (ℤ𝑀) = ∅)
64, 5ax-mp 5 . . . . . 6 (ℤ𝑀) = ∅
73, 6eqtri 2849 . . . . 5 𝑍 = ∅
82, 7feq12i 6271 . . . 4 (𝐹:𝑍⟶ℝ ↔ ∅:∅⟶ℝ)
91, 8mpbir 223 . . 3 𝐹:𝑍⟶ℝ
109a1i 11 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ)
11 climrel 14600 . . . . 5 Rel ⇝
1211a1i 11 . . . 4 (∅ ∈ ℂ → Rel ⇝ )
13 0cnv 40769 . . . . 5 (∅ ∈ ℂ → ∅ ⇝ ∅)
142, 13syl5eqbr 4908 . . . 4 (∅ ∈ ℂ → 𝐹 ⇝ ∅)
15 releldm 5591 . . . 4 ((Rel ⇝ ∧ 𝐹 ⇝ ∅) → 𝐹 ∈ dom ⇝ )
1612, 14, 15syl2anc 581 . . 3 (∅ ∈ ℂ → 𝐹 ∈ dom ⇝ )
1716adantr 474 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → 𝐹 ∈ dom ⇝ )
1813adantr 474 . . . 4 ((∅ ∈ ℂ ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
1918adantlr 708 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ∅ ⇝ ∅)
20 simpr 479 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ ∅)
212fveq2i 6436 . . . . . . . . . 10 (lim sup‘𝐹) = (lim sup‘∅)
22 limsup0 40721 . . . . . . . . . 10 (lim sup‘∅) = -∞
2321, 22eqtri 2849 . . . . . . . . 9 (lim sup‘𝐹) = -∞
242, 23breq12i 4882 . . . . . . . 8 (𝐹 ⇝ (lim sup‘𝐹) ↔ ∅ ⇝ -∞)
2524biimpi 208 . . . . . . 7 (𝐹 ⇝ (lim sup‘𝐹) → ∅ ⇝ -∞)
2625adantr 474 . . . . . 6 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ ⇝ -∞)
27 climuni 14660 . . . . . 6 ((∅ ⇝ ∅ ∧ ∅ ⇝ -∞) → ∅ = -∞)
2820, 26, 27syl2anc 581 . . . . 5 ((𝐹 ⇝ (lim sup‘𝐹) ∧ ∅ ⇝ ∅) → ∅ = -∞)
2928adantll 707 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ∅ = -∞)
30 nelneq 2930 . . . . 5 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ ∅ = -∞)
3130ad2antrr 719 . . . 4 ((((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) ∧ ∅ ⇝ ∅) → ¬ ∅ = -∞)
3229, 31pm2.65da 853 . . 3 (((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) ∧ 𝐹 ⇝ (lim sup‘𝐹)) → ¬ ∅ ⇝ ∅)
3319, 32pm2.65da 853 . 2 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → ¬ 𝐹 ⇝ (lim sup‘𝐹))
3410, 17, 333jca 1164 1 ((∅ ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹:𝑍⟶ℝ ∧ 𝐹 ∈ dom ⇝ ∧ ¬ 𝐹 ⇝ (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  c0 4144   class class class wbr 4873  dom cdm 5342  Rel wrel 5347  wf 6119  cfv 6123  cc 10250  cr 10251  -∞cmnf 10389  cz 11704  cuz 11968  lim supclsp 14578  cli 14592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-n0 11619  df-z 11705  df-uz 11969  df-rp 12113  df-seq 13096  df-exp 13155  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator