Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   GIF version

Theorem rencldnfilem 42379
Description: Lemma for rencldnfi 42380. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem rencldnfilem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2729 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎 = (abs‘(𝑏𝐵)) ↔ 𝑐 = (abs‘(𝑏𝐵))))
21rexbidv 3168 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
32elrab 3679 . . . . . . . . . . 11 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ (𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
4 simp-4l 781 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐴 ⊆ ℝ)
5 simpr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏𝐴)
64, 5sseldd 3977 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℝ)
76recnd 11274 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℂ)
8 simp-4r 782 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℝ)
98recnd 11274 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11603 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ∈ ℂ)
11 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ¬ 𝐵𝐴)
1211ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝐵𝐴)
13 nelneq 2849 . . . . . . . . . . . . . . . . 17 ((𝑏𝐴 ∧ ¬ 𝐵𝐴) → ¬ 𝑏 = 𝐵)
145, 12, 13syl2anc 582 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝑏 = 𝐵)
15 subeq0 11518 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) = 0 ↔ 𝑏 = 𝐵))
1615necon3abid 2966 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
177, 9, 16syl2anc 582 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
1814, 17mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ≠ 0)
1910, 18absrpcld 15431 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (abs‘(𝑏𝐵)) ∈ ℝ+)
20 eleq1 2813 . . . . . . . . . . . . . 14 (𝑐 = (abs‘(𝑏𝐵)) → (𝑐 ∈ ℝ+ ↔ (abs‘(𝑏𝐵)) ∈ ℝ+))
2119, 20syl5ibrcom 246 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2221rexlimdva 3144 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) → (∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2322expimpd 452 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ((𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))) → 𝑐 ∈ ℝ+))
243, 23biimtrid 241 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ+))
2524ssrdv 3982 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
2625adantr 479 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
27 abrexfi 9378 . . . . . . . . . . 11 (𝐴 ∈ Fin → {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
28 rabssab 4079 . . . . . . . . . . 11 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
29 ssfi 9198 . . . . . . . . . . 11 (({𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3027, 28, 29sylancl 584 . . . . . . . . . 10 (𝐴 ∈ Fin → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3130adantl 480 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
32 simplrl 775 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
33 n0 4346 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3432, 33sylib 217 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑦 𝑦𝐴)
35 simp-4l 781 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐴 ⊆ ℝ)
36 simpr 483 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦𝐴)
3735, 36sseldd 3977 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
3837recnd 11274 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
39 simp-4r 782 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
4039recnd 11274 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℂ)
4138, 40subcld 11603 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (𝑦𝐵) ∈ ℂ)
4241abscld 15419 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ ℝ)
43 eqid 2725 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))
44 fvoveq1 7442 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (abs‘(𝑏𝐵)) = (abs‘(𝑦𝐵)))
4544rspceeqv 3628 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4643, 45mpan2 689 . . . . . . . . . . . . 13 (𝑦𝐴 → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4746adantl 480 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
48 eqeq1 2729 . . . . . . . . . . . . . 14 (𝑎 = (abs‘(𝑦𝐵)) → (𝑎 = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
4948rexbidv 3168 . . . . . . . . . . . . 13 (𝑎 = (abs‘(𝑦𝐵)) → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5049elrab 3679 . . . . . . . . . . . 12 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ ((abs‘(𝑦𝐵)) ∈ ℝ ∧ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5142, 47, 50sylanbrc 581 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5251ne0d 4335 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5334, 52exlimddv 1930 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
54 ssrab2 4073 . . . . . . . . . 10 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ
5554a1i 11 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
56 gtso 11327 . . . . . . . . . 10 < Or ℝ
57 fisupcl 9494 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5856, 57mpan 688 . . . . . . . . 9 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5931, 53, 55, 58syl3anc 1368 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6026, 59sseldd 3977 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+)
6154a1i 11 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
62 soss 5610 . . . . . . . . . . . . . . . 16 ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ → ( < Or ℝ → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}))
6354, 56, 62mp2 9 . . . . . . . . . . . . . . 15 < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
6463a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
65 fisupg 9316 . . . . . . . . . . . . . 14 (( < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
6664, 31, 53, 65syl3anc 1368 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
67 elrabi 3673 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ)
68 elrabi 3673 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑑 ∈ ℝ)
69 vex 3465 . . . . . . . . . . . . . . . . . . . . . 22 𝑐 ∈ V
70 vex 3465 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
7169, 70brcnv 5885 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 < 𝑑𝑑 < 𝑐)
7271notbii 319 . . . . . . . . . . . . . . . . . . . 20 𝑐 < 𝑑 ↔ ¬ 𝑑 < 𝑐)
73 lenlt 11324 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐𝑑 ↔ ¬ 𝑑 < 𝑐))
7473biimprd 247 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑑 < 𝑐𝑐𝑑))
7572, 74biimtrid 241 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7675adantll 712 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7768, 76sylan2 591 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → (¬ 𝑐 < 𝑑𝑐𝑑))
7877ralimdva 3156 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
7978adantrd 490 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8067, 79sylan2 591 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8180reximdva 3157 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → (∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8266, 81mpd 15 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
8382adantr 479 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
84 lbinfle 12202 . . . . . . . . . . 11 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ ∧ ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑 ∧ (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8561, 83, 51, 84syl3anc 1368 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
86 df-inf 9468 . . . . . . . . . . . 12 inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8786eqcomi 2734 . . . . . . . . . . 11 sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8887breq1i 5156 . . . . . . . . . 10 (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8985, 88sylibr 233 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9054, 59sselid 3974 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9190adantr 479 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9291, 42lenltd 11392 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9389, 92mpbid 231 . . . . . . . 8 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
9493ralrimiva 3135 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
95 breq2 5153 . . . . . . . . . 10 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → ((abs‘(𝑦𝐵)) < 𝑥 ↔ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9695notbid 317 . . . . . . . . 9 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9796ralbidv 3167 . . . . . . . 8 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9897rspcev 3606 . . . . . . 7 ((sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
9960, 94, 98syl2anc 582 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
100 ralnex 3061 . . . . . . . 8 (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
101100rexbii 3083 . . . . . . 7 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
102 rexnal 3089 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
103101, 102bitri 274 . . . . . 6 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
10499, 103sylib 217 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
105104ex 411 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
1061053impa 1107 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
107106con2d 134 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 → ¬ 𝐴 ∈ Fin))
108107imp 405 1 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wne 2929  wral 3050  wrex 3059  {crab 3418  wss 3944  c0 4322   class class class wbr 5149   Or wor 5589  ccnv 5677  cfv 6549  (class class class)co 7419  Fincfn 8964  supcsup 9465  infcinf 9466  cc 11138  cr 11139  0cc0 11140   < clt 11280  cle 11281  cmin 11476  +crp 13009  abscabs 15217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-n0 12506  df-z 12592  df-uz 12856  df-rp 13010  df-seq 14003  df-exp 14063  df-cj 15082  df-re 15083  df-im 15084  df-sqrt 15218  df-abs 15219
This theorem is referenced by:  rencldnfi  42380
  Copyright terms: Public domain W3C validator