Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   GIF version

Theorem rencldnfilem 42808
Description: Lemma for rencldnfi 42809. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem rencldnfilem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2739 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎 = (abs‘(𝑏𝐵)) ↔ 𝑐 = (abs‘(𝑏𝐵))))
21rexbidv 3177 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
32elrab 3695 . . . . . . . . . . 11 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ (𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
4 simp-4l 783 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐴 ⊆ ℝ)
5 simpr 484 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏𝐴)
64, 5sseldd 3996 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℝ)
76recnd 11287 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℂ)
8 simp-4r 784 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℝ)
98recnd 11287 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11618 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ∈ ℂ)
11 simprr 773 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ¬ 𝐵𝐴)
1211ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝐵𝐴)
13 nelneq 2863 . . . . . . . . . . . . . . . . 17 ((𝑏𝐴 ∧ ¬ 𝐵𝐴) → ¬ 𝑏 = 𝐵)
145, 12, 13syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝑏 = 𝐵)
15 subeq0 11533 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) = 0 ↔ 𝑏 = 𝐵))
1615necon3abid 2975 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
177, 9, 16syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
1814, 17mpbird 257 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ≠ 0)
1910, 18absrpcld 15484 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (abs‘(𝑏𝐵)) ∈ ℝ+)
20 eleq1 2827 . . . . . . . . . . . . . 14 (𝑐 = (abs‘(𝑏𝐵)) → (𝑐 ∈ ℝ+ ↔ (abs‘(𝑏𝐵)) ∈ ℝ+))
2119, 20syl5ibrcom 247 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2221rexlimdva 3153 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) → (∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2322expimpd 453 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ((𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))) → 𝑐 ∈ ℝ+))
243, 23biimtrid 242 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ+))
2524ssrdv 4001 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
2625adantr 480 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
27 abrexfi 9390 . . . . . . . . . . 11 (𝐴 ∈ Fin → {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
28 rabssab 4095 . . . . . . . . . . 11 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
29 ssfi 9212 . . . . . . . . . . 11 (({𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3027, 28, 29sylancl 586 . . . . . . . . . 10 (𝐴 ∈ Fin → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3130adantl 481 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
32 simplrl 777 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
33 n0 4359 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3432, 33sylib 218 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑦 𝑦𝐴)
35 simp-4l 783 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐴 ⊆ ℝ)
36 simpr 484 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦𝐴)
3735, 36sseldd 3996 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
3837recnd 11287 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
39 simp-4r 784 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
4039recnd 11287 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℂ)
4138, 40subcld 11618 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (𝑦𝐵) ∈ ℂ)
4241abscld 15472 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ ℝ)
43 eqid 2735 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))
44 fvoveq1 7454 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (abs‘(𝑏𝐵)) = (abs‘(𝑦𝐵)))
4544rspceeqv 3645 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4643, 45mpan2 691 . . . . . . . . . . . . 13 (𝑦𝐴 → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4746adantl 481 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
48 eqeq1 2739 . . . . . . . . . . . . . 14 (𝑎 = (abs‘(𝑦𝐵)) → (𝑎 = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
4948rexbidv 3177 . . . . . . . . . . . . 13 (𝑎 = (abs‘(𝑦𝐵)) → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5049elrab 3695 . . . . . . . . . . . 12 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ ((abs‘(𝑦𝐵)) ∈ ℝ ∧ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5142, 47, 50sylanbrc 583 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5251ne0d 4348 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5334, 52exlimddv 1933 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
54 ssrab2 4090 . . . . . . . . . 10 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ
5554a1i 11 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
56 gtso 11340 . . . . . . . . . 10 < Or ℝ
57 fisupcl 9507 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5856, 57mpan 690 . . . . . . . . 9 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5931, 53, 55, 58syl3anc 1370 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6026, 59sseldd 3996 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+)
6154a1i 11 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
62 soss 5617 . . . . . . . . . . . . . . . 16 ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ → ( < Or ℝ → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}))
6354, 56, 62mp2 9 . . . . . . . . . . . . . . 15 < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
6463a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
65 fisupg 9322 . . . . . . . . . . . . . 14 (( < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
6664, 31, 53, 65syl3anc 1370 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
67 elrabi 3690 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ)
68 elrabi 3690 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑑 ∈ ℝ)
69 vex 3482 . . . . . . . . . . . . . . . . . . . . . 22 𝑐 ∈ V
70 vex 3482 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
7169, 70brcnv 5896 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 < 𝑑𝑑 < 𝑐)
7271notbii 320 . . . . . . . . . . . . . . . . . . . 20 𝑐 < 𝑑 ↔ ¬ 𝑑 < 𝑐)
73 lenlt 11337 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐𝑑 ↔ ¬ 𝑑 < 𝑐))
7473biimprd 248 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑑 < 𝑐𝑐𝑑))
7572, 74biimtrid 242 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7675adantll 714 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7768, 76sylan2 593 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → (¬ 𝑐 < 𝑑𝑐𝑑))
7877ralimdva 3165 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
7978adantrd 491 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8067, 79sylan2 593 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8180reximdva 3166 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → (∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8266, 81mpd 15 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
8382adantr 480 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
84 lbinfle 12221 . . . . . . . . . . 11 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ ∧ ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑 ∧ (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8561, 83, 51, 84syl3anc 1370 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
86 df-inf 9481 . . . . . . . . . . . 12 inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8786eqcomi 2744 . . . . . . . . . . 11 sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8887breq1i 5155 . . . . . . . . . 10 (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8985, 88sylibr 234 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9054, 59sselid 3993 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9190adantr 480 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9291, 42lenltd 11405 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9389, 92mpbid 232 . . . . . . . 8 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
9493ralrimiva 3144 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
95 breq2 5152 . . . . . . . . . 10 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → ((abs‘(𝑦𝐵)) < 𝑥 ↔ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9695notbid 318 . . . . . . . . 9 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9796ralbidv 3176 . . . . . . . 8 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9897rspcev 3622 . . . . . . 7 ((sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
9960, 94, 98syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
100 ralnex 3070 . . . . . . . 8 (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
101100rexbii 3092 . . . . . . 7 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
102 rexnal 3098 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
103101, 102bitri 275 . . . . . 6 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
10499, 103sylib 218 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
105104ex 412 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
1061053impa 1109 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
107106con2d 134 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 → ¬ 𝐴 ∈ Fin))
108107imp 406 1 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  {crab 3433  wss 3963  c0 4339   class class class wbr 5148   Or wor 5596  ccnv 5688  cfv 6563  (class class class)co 7431  Fincfn 8984  supcsup 9478  infcinf 9479  cc 11151  cr 11152  0cc0 11153   < clt 11293  cle 11294  cmin 11490  +crp 13032  abscabs 15270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272
This theorem is referenced by:  rencldnfi  42809
  Copyright terms: Public domain W3C validator