Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rencldnfilem Structured version   Visualization version   GIF version

Theorem rencldnfilem 41234
Description: Lemma for rencldnfi 41235. (Contributed by Stefan O'Rear, 18-Oct-2014.)
Assertion
Ref Expression
rencldnfilem (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem rencldnfilem
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2735 . . . . . . . . . . . . 13 (𝑎 = 𝑐 → (𝑎 = (abs‘(𝑏𝐵)) ↔ 𝑐 = (abs‘(𝑏𝐵))))
21rexbidv 3177 . . . . . . . . . . . 12 (𝑎 = 𝑐 → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
32elrab 3663 . . . . . . . . . . 11 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ (𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))))
4 simp-4l 781 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐴 ⊆ ℝ)
5 simpr 485 . . . . . . . . . . . . . . . . . 18 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏𝐴)
64, 5sseldd 3963 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℝ)
76recnd 11207 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝑏 ∈ ℂ)
8 simp-4r 782 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℝ)
98recnd 11207 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → 𝐵 ∈ ℂ)
107, 9subcld 11536 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ∈ ℂ)
11 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ¬ 𝐵𝐴)
1211ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝐵𝐴)
13 nelneq 2856 . . . . . . . . . . . . . . . . 17 ((𝑏𝐴 ∧ ¬ 𝐵𝐴) → ¬ 𝑏 = 𝐵)
145, 12, 13syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ¬ 𝑏 = 𝐵)
15 subeq0 11451 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) = 0 ↔ 𝑏 = 𝐵))
1615necon3abid 2976 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
177, 9, 16syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → ((𝑏𝐵) ≠ 0 ↔ ¬ 𝑏 = 𝐵))
1814, 17mpbird 256 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑏𝐵) ≠ 0)
1910, 18absrpcld 15360 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (abs‘(𝑏𝐵)) ∈ ℝ+)
20 eleq1 2820 . . . . . . . . . . . . . 14 (𝑐 = (abs‘(𝑏𝐵)) → (𝑐 ∈ ℝ+ ↔ (abs‘(𝑏𝐵)) ∈ ℝ+))
2119, 20syl5ibrcom 246 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) ∧ 𝑏𝐴) → (𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2221rexlimdva 3154 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝑐 ∈ ℝ) → (∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵)) → 𝑐 ∈ ℝ+))
2322expimpd 454 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → ((𝑐 ∈ ℝ ∧ ∃𝑏𝐴 𝑐 = (abs‘(𝑏𝐵))) → 𝑐 ∈ ℝ+))
243, 23biimtrid 241 . . . . . . . . . 10 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ+))
2524ssrdv 3968 . . . . . . . . 9 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
2625adantr 481 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ+)
27 abrexfi 9318 . . . . . . . . . . 11 (𝐴 ∈ Fin → {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
28 rabssab 4063 . . . . . . . . . . 11 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
29 ssfi 9139 . . . . . . . . . . 11 (({𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ {𝑎 ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3027, 28, 29sylancl 586 . . . . . . . . . 10 (𝐴 ∈ Fin → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
3130adantl 482 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin)
32 simplrl 775 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → 𝐴 ≠ ∅)
33 n0 4326 . . . . . . . . . . 11 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
3432, 33sylib 217 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑦 𝑦𝐴)
35 simp-4l 781 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐴 ⊆ ℝ)
36 simpr 485 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦𝐴)
3735, 36sseldd 3963 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
3837recnd 11207 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
39 simp-4r 782 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℝ)
4039recnd 11207 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → 𝐵 ∈ ℂ)
4138, 40subcld 11536 . . . . . . . . . . . . 13 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (𝑦𝐵) ∈ ℂ)
4241abscld 15348 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ ℝ)
43 eqid 2731 . . . . . . . . . . . . . 14 (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))
44 fvoveq1 7400 . . . . . . . . . . . . . . 15 (𝑏 = 𝑦 → (abs‘(𝑏𝐵)) = (abs‘(𝑦𝐵)))
4544rspceeqv 3613 . . . . . . . . . . . . . 14 ((𝑦𝐴 ∧ (abs‘(𝑦𝐵)) = (abs‘(𝑦𝐵))) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4643, 45mpan2 689 . . . . . . . . . . . . 13 (𝑦𝐴 → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
4746adantl 482 . . . . . . . . . . . 12 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵)))
48 eqeq1 2735 . . . . . . . . . . . . . 14 (𝑎 = (abs‘(𝑦𝐵)) → (𝑎 = (abs‘(𝑏𝐵)) ↔ (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
4948rexbidv 3177 . . . . . . . . . . . . 13 (𝑎 = (abs‘(𝑦𝐵)) → (∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵)) ↔ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5049elrab 3663 . . . . . . . . . . . 12 ((abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ↔ ((abs‘(𝑦𝐵)) ∈ ℝ ∧ ∃𝑏𝐴 (abs‘(𝑦𝐵)) = (abs‘(𝑏𝐵))))
5142, 47, 50sylanbrc 583 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5251ne0d 4315 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
5334, 52exlimddv 1938 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅)
54 ssrab2 4057 . . . . . . . . . 10 {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ
5554a1i 11 . . . . . . . . 9 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
56 gtso 11260 . . . . . . . . . 10 < Or ℝ
57 fisupcl 9429 . . . . . . . . . 10 (( < Or ℝ ∧ ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5856, 57mpan 688 . . . . . . . . 9 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅ ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
5931, 53, 55, 58syl3anc 1371 . . . . . . . 8 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
6026, 59sseldd 3963 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+)
6154a1i 11 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ)
62 soss 5585 . . . . . . . . . . . . . . . 16 ({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ → ( < Or ℝ → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}))
6354, 56, 62mp2 9 . . . . . . . . . . . . . . 15 < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}
6463a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))})
65 fisupg 9257 . . . . . . . . . . . . . 14 (( < Or {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ∈ Fin ∧ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ≠ ∅) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
6664, 31, 53, 65syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)))
67 elrabi 3657 . . . . . . . . . . . . . . 15 (𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑐 ∈ ℝ)
68 elrabi 3657 . . . . . . . . . . . . . . . . . 18 (𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} → 𝑑 ∈ ℝ)
69 vex 3463 . . . . . . . . . . . . . . . . . . . . . 22 𝑐 ∈ V
70 vex 3463 . . . . . . . . . . . . . . . . . . . . . 22 𝑑 ∈ V
7169, 70brcnv 5858 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 < 𝑑𝑑 < 𝑐)
7271notbii 319 . . . . . . . . . . . . . . . . . . . 20 𝑐 < 𝑑 ↔ ¬ 𝑑 < 𝑐)
73 lenlt 11257 . . . . . . . . . . . . . . . . . . . . 21 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (𝑐𝑑 ↔ ¬ 𝑑 < 𝑐))
7473biimprd 247 . . . . . . . . . . . . . . . . . . . 20 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑑 < 𝑐𝑐𝑑))
7572, 74biimtrid 241 . . . . . . . . . . . . . . . . . . 19 ((𝑐 ∈ ℝ ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7675adantll 712 . . . . . . . . . . . . . . . . . 18 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ ℝ) → (¬ 𝑐 < 𝑑𝑐𝑑))
7768, 76sylan2 593 . . . . . . . . . . . . . . . . 17 ((((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) ∧ 𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → (¬ 𝑐 < 𝑑𝑐𝑑))
7877ralimdva 3166 . . . . . . . . . . . . . . . 16 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
7978adantrd 492 . . . . . . . . . . . . . . 15 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ ℝ) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8067, 79sylan2 593 . . . . . . . . . . . . . 14 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → ((∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8180reximdva 3167 . . . . . . . . . . . . 13 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → (∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ¬ 𝑐 < 𝑑 ∧ ∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} (𝑑 < 𝑐 → ∃𝑥 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑑 < 𝑥)) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑))
8266, 81mpd 15 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
8382adantr 481 . . . . . . . . . . 11 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑)
84 lbinfle 12134 . . . . . . . . . . 11 (({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))} ⊆ ℝ ∧ ∃𝑐 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}∀𝑑 ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}𝑐𝑑 ∧ (abs‘(𝑦𝐵)) ∈ {𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8561, 83, 51, 84syl3anc 1371 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
86 df-inf 9403 . . . . . . . . . . . 12 inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8786eqcomi 2740 . . . . . . . . . . 11 sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) = inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )
8887breq1i 5132 . . . . . . . . . 10 (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ inf({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
8985, 88sylibr 233 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)))
9054, 59sselid 3960 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9190adantr 481 . . . . . . . . . 10 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ)
9291, 42lenltd 11325 . . . . . . . . 9 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → (sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ≤ (abs‘(𝑦𝐵)) ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9389, 92mpbid 231 . . . . . . . 8 (((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) ∧ 𝑦𝐴) → ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
9493ralrimiva 3145 . . . . . . 7 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ))
95 breq2 5129 . . . . . . . . . 10 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → ((abs‘(𝑦𝐵)) < 𝑥 ↔ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9695notbid 317 . . . . . . . . 9 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9796ralbidv 3176 . . . . . . . 8 (𝑥 = sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) → (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )))
9897rspcev 3595 . . . . . . 7 ((sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < sup({𝑎 ∈ ℝ ∣ ∃𝑏𝐴 𝑎 = (abs‘(𝑏𝐵))}, ℝ, < )) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
9960, 94, 98syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥)
100 ralnex 3071 . . . . . . . 8 (∀𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
101100rexbii 3093 . . . . . . 7 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
102 rexnal 3099 . . . . . . 7 (∃𝑥 ∈ ℝ+ ¬ ∃𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
103101, 102bitri 274 . . . . . 6 (∃𝑥 ∈ ℝ+𝑦𝐴 ¬ (abs‘(𝑦𝐵)) < 𝑥 ↔ ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
10499, 103sylib 217 . . . . 5 ((((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ 𝐴 ∈ Fin) → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥)
105104ex 413 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
1061053impa 1110 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (𝐴 ∈ Fin → ¬ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥))
107106con2d 134 . 2 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) → (∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥 → ¬ 𝐴 ∈ Fin))
108107imp 407 1 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 ≠ ∅ ∧ ¬ 𝐵𝐴)) ∧ ∀𝑥 ∈ ℝ+𝑦𝐴 (abs‘(𝑦𝐵)) < 𝑥) → ¬ 𝐴 ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2708  wne 2939  wral 3060  wrex 3069  {crab 3418  wss 3928  c0 4302   class class class wbr 5125   Or wor 5564  ccnv 5652  cfv 6516  (class class class)co 7377  Fincfn 8905  supcsup 9400  infcinf 9401  cc 11073  cr 11074  0cc0 11075   < clt 11213  cle 11214  cmin 11409  +crp 12939  abscabs 15146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3364  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-pss 3947  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-br 5126  df-opab 5188  df-mpt 5209  df-tr 5243  df-id 5551  df-eprel 5557  df-po 5565  df-so 5566  df-fr 5608  df-we 5610  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-pred 6273  df-ord 6340  df-on 6341  df-lim 6342  df-suc 6343  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-mpo 7382  df-om 7823  df-1st 7941  df-2nd 7942  df-frecs 8232  df-wrecs 8263  df-recs 8337  df-rdg 8376  df-1o 8432  df-er 8670  df-en 8906  df-dom 8907  df-sdom 8908  df-fin 8909  df-sup 9402  df-inf 9403  df-pnf 11215  df-mnf 11216  df-xr 11217  df-ltxr 11218  df-le 11219  df-sub 11411  df-neg 11412  df-div 11837  df-nn 12178  df-2 12240  df-3 12241  df-n0 12438  df-z 12524  df-uz 12788  df-rp 12940  df-seq 13932  df-exp 13993  df-cj 15011  df-re 15012  df-im 15013  df-sqrt 15147  df-abs 15148
This theorem is referenced by:  rencldnfi  41235
  Copyright terms: Public domain W3C validator