| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln0 | Structured version Visualization version GIF version | ||
| Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
| Ref | Expression |
|---|---|
| maxidln0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| maxidln0.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| maxidln0.3 | ⊢ 𝑍 = (GId‘𝐺) |
| maxidln0.4 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| maxidln0 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | maxidlidl 38020 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
| 2 | maxidln0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 3 | maxidln0.3 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
| 4 | 2, 3 | idl0cl 37997 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝑀) |
| 5 | 1, 4 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ∈ 𝑀) |
| 6 | maxidln0.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 7 | maxidln0.4 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
| 8 | 6, 7 | maxidln1 38023 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
| 9 | nelneq 2852 | . . . 4 ⊢ ((𝑍 ∈ 𝑀 ∧ ¬ 𝑈 ∈ 𝑀) → ¬ 𝑍 = 𝑈) | |
| 10 | 5, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈) |
| 11 | 10 | neqned 2932 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ≠ 𝑈) |
| 12 | 11 | necomd 2980 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6486 1st c1st 7929 2nd c2nd 7930 GIdcgi 30452 RingOpscrngo 37873 Idlcidl 37986 MaxIdlcmaxidl 37988 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fo 6492 df-fv 6494 df-riota 7310 df-ov 7356 df-1st 7931 df-2nd 7932 df-grpo 30455 df-gid 30456 df-ablo 30507 df-ass 37822 df-exid 37824 df-mgmOLD 37828 df-sgrOLD 37840 df-mndo 37846 df-rngo 37874 df-idl 37989 df-maxidl 37991 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |