Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidln0 Structured version   Visualization version   GIF version

Theorem maxidln0 38074
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
maxidln0.1 𝐺 = (1st𝑅)
maxidln0.2 𝐻 = (2nd𝑅)
maxidln0.3 𝑍 = (GId‘𝐺)
maxidln0.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
maxidln0 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)

Proof of Theorem maxidln0
StepHypRef Expression
1 maxidlidl 38070 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
2 maxidln0.1 . . . . . 6 𝐺 = (1st𝑅)
3 maxidln0.3 . . . . . 6 𝑍 = (GId‘𝐺)
42, 3idl0cl 38047 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍𝑀)
51, 4syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑀)
6 maxidln0.2 . . . . 5 𝐻 = (2nd𝑅)
7 maxidln0.4 . . . . 5 𝑈 = (GId‘𝐻)
86, 7maxidln1 38073 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
9 nelneq 2859 . . . 4 ((𝑍𝑀 ∧ ¬ 𝑈𝑀) → ¬ 𝑍 = 𝑈)
105, 8, 9syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈)
1110neqned 2940 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑈)
1211necomd 2988 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  cfv 6536  1st c1st 7991  2nd c2nd 7992  GIdcgi 30476  RingOpscrngo 37923  Idlcidl 38036  MaxIdlcmaxidl 38038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-riota 7367  df-ov 7413  df-1st 7993  df-2nd 7994  df-grpo 30479  df-gid 30480  df-ablo 30531  df-ass 37872  df-exid 37874  df-mgmOLD 37878  df-sgrOLD 37890  df-mndo 37896  df-rngo 37924  df-idl 38039  df-maxidl 38041
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator