![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln0 | Structured version Visualization version GIF version |
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
maxidln0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidln0.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
maxidln0.3 | ⊢ 𝑍 = (GId‘𝐺) |
maxidln0.4 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
maxidln0 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlidl 38001 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
2 | maxidln0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | maxidln0.3 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 2, 3 | idl0cl 37978 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝑀) |
5 | 1, 4 | syldan 590 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ∈ 𝑀) |
6 | maxidln0.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | maxidln0.4 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
8 | 6, 7 | maxidln1 38004 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
9 | nelneq 2868 | . . . 4 ⊢ ((𝑍 ∈ 𝑀 ∧ ¬ 𝑈 ∈ 𝑀) → ¬ 𝑍 = 𝑈) | |
10 | 5, 8, 9 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈) |
11 | 10 | neqned 2953 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ≠ 𝑈) |
12 | 11 | necomd 3002 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 GIdcgi 30522 RingOpscrngo 37854 Idlcidl 37967 MaxIdlcmaxidl 37969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-fv 6581 df-riota 7404 df-ov 7451 df-1st 8030 df-2nd 8031 df-grpo 30525 df-gid 30526 df-ablo 30577 df-ass 37803 df-exid 37805 df-mgmOLD 37809 df-sgrOLD 37821 df-mndo 37827 df-rngo 37855 df-idl 37970 df-maxidl 37972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |