Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln0 | Structured version Visualization version GIF version |
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
maxidln0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidln0.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
maxidln0.3 | ⊢ 𝑍 = (GId‘𝐺) |
maxidln0.4 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
maxidln0 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlidl 36353 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
2 | maxidln0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | maxidln0.3 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 2, 3 | idl0cl 36330 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝑀) |
5 | 1, 4 | syldan 592 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ∈ 𝑀) |
6 | maxidln0.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | maxidln0.4 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
8 | 6, 7 | maxidln1 36356 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
9 | nelneq 2862 | . . . 4 ⊢ ((𝑍 ∈ 𝑀 ∧ ¬ 𝑈 ∈ 𝑀) → ¬ 𝑍 = 𝑈) | |
10 | 5, 8, 9 | syl2anc 585 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈) |
11 | 10 | neqned 2948 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ≠ 𝑈) |
12 | 11 | necomd 2997 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6484 1st c1st 7902 2nd c2nd 7903 GIdcgi 29140 RingOpscrngo 36206 Idlcidl 36319 MaxIdlcmaxidl 36321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fo 6490 df-fv 6492 df-riota 7298 df-ov 7345 df-1st 7904 df-2nd 7905 df-grpo 29143 df-gid 29144 df-ablo 29195 df-ass 36155 df-exid 36157 df-mgmOLD 36161 df-sgrOLD 36173 df-mndo 36179 df-rngo 36207 df-idl 36322 df-maxidl 36324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |