Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  maxidln0 Structured version   Visualization version   GIF version

Theorem maxidln0 38105
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.)
Hypotheses
Ref Expression
maxidln0.1 𝐺 = (1st𝑅)
maxidln0.2 𝐻 = (2nd𝑅)
maxidln0.3 𝑍 = (GId‘𝐺)
maxidln0.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
maxidln0 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)

Proof of Theorem maxidln0
StepHypRef Expression
1 maxidlidl 38101 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅))
2 maxidln0.1 . . . . . 6 𝐺 = (1st𝑅)
3 maxidln0.3 . . . . . 6 𝑍 = (GId‘𝐺)
42, 3idl0cl 38078 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍𝑀)
51, 4syldan 591 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑀)
6 maxidln0.2 . . . . 5 𝐻 = (2nd𝑅)
7 maxidln0.4 . . . . 5 𝑈 = (GId‘𝐻)
86, 7maxidln1 38104 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈𝑀)
9 nelneq 2857 . . . 4 ((𝑍𝑀 ∧ ¬ 𝑈𝑀) → ¬ 𝑍 = 𝑈)
105, 8, 9syl2anc 584 . . 3 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈)
1110neqned 2936 . 2 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍𝑈)
1211necomd 2984 1 ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cfv 6486  1st c1st 7925  2nd c2nd 7926  GIdcgi 30472  RingOpscrngo 37954  Idlcidl 38067  MaxIdlcmaxidl 38069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7309  df-ov 7355  df-1st 7927  df-2nd 7928  df-grpo 30475  df-gid 30476  df-ablo 30527  df-ass 37903  df-exid 37905  df-mgmOLD 37909  df-sgrOLD 37921  df-mndo 37927  df-rngo 37955  df-idl 38070  df-maxidl 38072
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator