![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > maxidln0 | Structured version Visualization version GIF version |
Description: A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
Ref | Expression |
---|---|
maxidln0.1 | ⊢ 𝐺 = (1st ‘𝑅) |
maxidln0.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
maxidln0.3 | ⊢ 𝑍 = (GId‘𝐺) |
maxidln0.4 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
maxidln0 | ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | maxidlidl 38028 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | |
2 | maxidln0.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
3 | maxidln0.3 | . . . . . 6 ⊢ 𝑍 = (GId‘𝐺) | |
4 | 2, 3 | idl0cl 38005 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (Idl‘𝑅)) → 𝑍 ∈ 𝑀) |
5 | 1, 4 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ∈ 𝑀) |
6 | maxidln0.2 | . . . . 5 ⊢ 𝐻 = (2nd ‘𝑅) | |
7 | maxidln0.4 | . . . . 5 ⊢ 𝑈 = (GId‘𝐻) | |
8 | 6, 7 | maxidln1 38031 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) |
9 | nelneq 2863 | . . . 4 ⊢ ((𝑍 ∈ 𝑀 ∧ ¬ 𝑈 ∈ 𝑀) → ¬ 𝑍 = 𝑈) | |
10 | 5, 8, 9 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑍 = 𝑈) |
11 | 10 | neqned 2945 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑍 ≠ 𝑈) |
12 | 11 | necomd 2994 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ‘cfv 6563 1st c1st 8011 2nd c2nd 8012 GIdcgi 30519 RingOpscrngo 37881 Idlcidl 37994 MaxIdlcmaxidl 37996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ablo 30574 df-ass 37830 df-exid 37832 df-mgmOLD 37836 df-sgrOLD 37848 df-mndo 37854 df-rngo 37882 df-idl 37997 df-maxidl 37999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |