![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelss | Structured version Visualization version GIF version |
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
Ref | Expression |
---|---|
nelss | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | con3dimp 407 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∈ wcel 2104 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-in 3956 df-ss 3966 |
This theorem is referenced by: nrelv 5801 ordtr3 6410 smndex2dnrinv 18834 frlmssuvc2 21571 tfsconcatb0 42398 clsk1indlem1 43100 mapssbi 44212 fourierdlem10 45133 salgensscntex 45360 |
Copyright terms: Public domain | W3C validator |