MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelss Structured version   Visualization version   GIF version

Theorem nelss 3980
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
nelss ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)

Proof of Theorem nelss
StepHypRef Expression
1 ssel 3910 . . 3 (𝐵𝐶 → (𝐴𝐵𝐴𝐶))
21com12 32 . 2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
32con3dimp 408 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  nrelv  5699  ordtr3  6296  smndex2dnrinv  18469  frlmssuvc2  20912  clsk1indlem1  41544  mapssbi  42642  fourierdlem10  43548  salgensscntex  43773
  Copyright terms: Public domain W3C validator