| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelss | Structured version Visualization version GIF version | ||
| Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
| Ref | Expression |
|---|---|
| nelss | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3952 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) | |
| 2 | 1 | com12 32 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ∈ 𝐶)) |
| 3 | 2 | con3dimp 408 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clel 2809 df-ss 3943 |
| This theorem is referenced by: nrelv 5779 ordtr3 6398 smndex2dnrinv 18893 frlmssuvc2 21755 1arithidom 33552 tfsconcatb0 43368 clsk1indlem1 44069 mapssbi 45237 fourierdlem10 46146 salgensscntex 46373 |
| Copyright terms: Public domain | W3C validator |