![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nelss | Structured version Visualization version GIF version |
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
Ref | Expression |
---|---|
nelss | ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3938 | . . 3 ⊢ (𝐵 ⊆ 𝐶 → (𝐴 ∈ 𝐵 → 𝐴 ∈ 𝐶)) | |
2 | 1 | com12 32 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐵 ⊆ 𝐶 → 𝐴 ∈ 𝐶)) |
3 | 2 | con3dimp 410 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3911 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3446 df-in 3918 df-ss 3928 |
This theorem is referenced by: nrelv 5757 ordtr3 6363 smndex2dnrinv 18730 frlmssuvc2 21217 clsk1indlem1 42405 mapssbi 43521 fourierdlem10 44444 salgensscntex 44671 |
Copyright terms: Public domain | W3C validator |