MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nelss Structured version   Visualization version   GIF version

Theorem nelss 4074
Description: Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
nelss ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)

Proof of Theorem nelss
StepHypRef Expression
1 ssel 4002 . . 3 (𝐵𝐶 → (𝐴𝐵𝐴𝐶))
21com12 32 . 2 (𝐴𝐵 → (𝐵𝐶𝐴𝐶))
32con3dimp 408 1 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wcel 2108  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-clel 2819  df-ss 3993
This theorem is referenced by:  nrelv  5824  ordtr3  6440  smndex2dnrinv  18950  frlmssuvc2  21838  1arithidom  33530  tfsconcatb0  43306  clsk1indlem1  44007  mapssbi  45120  fourierdlem10  46038  salgensscntex  46265
  Copyright terms: Public domain W3C validator