MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3 Structured version   Visualization version   GIF version

Theorem ordtr3 6218
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordtr3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))

Proof of Theorem ordtr3
StepHypRef Expression
1 nelss 3941 . . . . . 6 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
21adantl 485 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → ¬ 𝐵𝐶)
3 ordtri1 6206 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
43con2bid 358 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
54adantr 484 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
62, 5mpbird 260 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → 𝐶𝐵)
76expr 460 . . 3 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (¬ 𝐴𝐶𝐶𝐵))
87orrd 862 . 2 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐴𝐶𝐶𝐵))
98ex 416 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 846  wcel 2114  wss 3844  Ord word 6172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-11 2162  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-pss 3863  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-tr 5138  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5484  df-we 5486  df-ord 6176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator