Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ordtr3 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordtr3 | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelss 3984 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐵 ⊆ 𝐶) |
3 | ordtri1 6299 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
4 | 3 | con2bid 355 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
5 | 4 | adantr 481 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
6 | 2, 5 | mpbird 256 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ 𝐵) |
7 | 6 | expr 457 | . . 3 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵)) |
8 | 7 | orrd 860 | . 2 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵)) |
9 | 8 | ex 413 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∈ wcel 2106 ⊆ wss 3887 Ord word 6265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |