![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordtr3 | Structured version Visualization version GIF version |
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
Ref | Expression |
---|---|
ordtr3 | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nelss 3860 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) | |
2 | 1 | adantl 474 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐵 ⊆ 𝐶) |
3 | ordtri1 5974 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
4 | 3 | con2bid 346 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
5 | 4 | adantr 473 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
6 | 2, 5 | mpbird 249 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ 𝐵) |
7 | 6 | expr 449 | . . 3 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵)) |
8 | 7 | orrd 890 | . 2 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵)) |
9 | 8 | ex 402 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∨ wo 874 ∈ wcel 2157 ⊆ wss 3769 Ord word 5940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |