MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3 Structured version   Visualization version   GIF version

Theorem ordtr3 6378
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordtr3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))

Proof of Theorem ordtr3
StepHypRef Expression
1 nelss 4012 . . . . . 6 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
21adantl 481 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → ¬ 𝐵𝐶)
3 ordtri1 6365 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
43con2bid 354 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
54adantr 480 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
62, 5mpbird 257 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → 𝐶𝐵)
76expr 456 . . 3 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (¬ 𝐴𝐶𝐶𝐵))
87orrd 863 . 2 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐴𝐶𝐶𝐵))
98ex 412 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  wcel 2109  wss 3914  Ord word 6331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator