MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtr3 Structured version   Visualization version   GIF version

Theorem ordtr3 6409
Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.)
Assertion
Ref Expression
ordtr3 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))

Proof of Theorem ordtr3
StepHypRef Expression
1 nelss 4047 . . . . . 6 ((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
21adantl 481 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → ¬ 𝐵𝐶)
3 ordtri1 6397 . . . . . . 7 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵𝐶 ↔ ¬ 𝐶𝐵))
43con2bid 354 . . . . . 6 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
54adantr 480 . . . . 5 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → (𝐶𝐵 ↔ ¬ 𝐵𝐶))
62, 5mpbird 257 . . . 4 (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴𝐵 ∧ ¬ 𝐴𝐶)) → 𝐶𝐵)
76expr 456 . . 3 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (¬ 𝐴𝐶𝐶𝐵))
87orrd 860 . 2 (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴𝐵) → (𝐴𝐶𝐶𝐵))
98ex 412 1 ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴𝐵 → (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  wcel 2105  wss 3948  Ord word 6363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator