| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordtr3 | Structured version Visualization version GIF version | ||
| Description: Transitive law for ordinal classes. (Contributed by Mario Carneiro, 30-Dec-2014.) (Proof shortened by JJ, 24-Sep-2021.) |
| Ref | Expression |
|---|---|
| ordtr3 | ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelss 4029 | . . . . . 6 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) → ¬ 𝐵 ⊆ 𝐶) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → ¬ 𝐵 ⊆ 𝐶) |
| 3 | ordtri1 6390 | . . . . . . 7 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐵 ⊆ 𝐶 ↔ ¬ 𝐶 ∈ 𝐵)) | |
| 4 | 3 | con2bid 354 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → (𝐶 ∈ 𝐵 ↔ ¬ 𝐵 ⊆ 𝐶)) |
| 6 | 2, 5 | mpbird 257 | . . . 4 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) → 𝐶 ∈ 𝐵) |
| 7 | 6 | expr 456 | . . 3 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (¬ 𝐴 ∈ 𝐶 → 𝐶 ∈ 𝐵)) |
| 8 | 7 | orrd 863 | . 2 ⊢ (((Ord 𝐵 ∧ Ord 𝐶) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵)) |
| 9 | 8 | ex 412 | 1 ⊢ ((Ord 𝐵 ∧ Ord 𝐶) → (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐶 ∨ 𝐶 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∈ wcel 2109 ⊆ wss 3931 Ord word 6356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |