| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgensscntex | Structured version Visualization version GIF version | ||
| Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgensscntex.a | ⊢ 𝐴 = (0[,]2) |
| salgensscntex.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salgensscntex.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| salgensscntex.g | ⊢ 𝐺 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| salgensscntex | ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgensscntex.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 2 | 0re 11176 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
| 3 | 2re 12260 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 2, 3 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
| 5 | 2 | leidi 11712 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
| 6 | 1le2 12390 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
| 7 | 5, 6 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
| 8 | iccss 13375 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
| 9 | 4, 7, 8 | mp2an 692 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
| 10 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
| 11 | 9, 10 | sselid 3944 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
| 12 | salgensscntex.a | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 13 | 11, 12 | eleqtrrdi 2839 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
| 14 | snelpwi 5403 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
| 16 | snfi 9014 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
| 17 | fict 9606 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
| 19 | orc 867 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 22 | 15, 21 | jca 511 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 23 | breq1 5110 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
| 24 | difeq2 4083 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
| 25 | 24 | breq1d 5117 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 26 | 23, 25 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 27 | salgensscntex.s | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 28 | 26, 27 | elrab2 3662 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 29 | 22, 28 | sylibr 234 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
| 30 | 29 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
| 31 | eqid 2729 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 32 | 31 | rnmptss 7095 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
| 33 | 30, 32 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
| 34 | 1, 33 | eqsstri 3993 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
| 35 | ovex 7420 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
| 36 | 12, 35 | eqeltri 2824 | . . . . 5 ⊢ 𝐴 ∈ V |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
| 38 | 37, 27 | salexct 46332 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
| 39 | 38 | mptru 1547 | . 2 ⊢ 𝑆 ∈ SAlg |
| 40 | ovex 7420 | . . . . . . . . 9 ⊢ (0[,]1) ∈ V | |
| 41 | 40 | mptex 7197 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 42 | 41 | rnex 7886 | . . . . . . 7 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 43 | 1, 42 | eqeltri 2824 | . . . . . 6 ⊢ 𝑋 ∈ V |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝑋 ∈ V) |
| 45 | salgensscntex.g | . . . . 5 ⊢ 𝐺 = (SalGen‘𝑋) | |
| 46 | 1 | unieqi 4883 | . . . . . 6 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 47 | vsnex 5389 | . . . . . . . . 9 ⊢ {𝑦} ∈ V | |
| 48 | 47 | rgenw 3048 | . . . . . . . 8 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
| 49 | dfiun3g 5931 | . . . . . . . 8 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
| 50 | 48, 49 | ax-mp 5 | . . . . . . 7 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 51 | 50 | eqcomi 2738 | . . . . . 6 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
| 52 | iunid 5024 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
| 53 | 46, 51, 52 | 3eqtrri 2757 | . . . . 5 ⊢ (0[,]1) = ∪ 𝑋 |
| 54 | 44, 45, 53 | unisalgen 46338 | . . . 4 ⊢ (⊤ → (0[,]1) ∈ 𝐺) |
| 55 | 54 | mptru 1547 | . . 3 ⊢ (0[,]1) ∈ 𝐺 |
| 56 | eqid 2729 | . . . 4 ⊢ (0[,]1) = (0[,]1) | |
| 57 | 12, 27, 56 | salexct2 46337 | . . 3 ⊢ ¬ (0[,]1) ∈ 𝑆 |
| 58 | nelss 4012 | . . 3 ⊢ (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺 ⊆ 𝑆) | |
| 59 | 55, 57, 58 | mp2an 692 | . 2 ⊢ ¬ 𝐺 ⊆ 𝑆 |
| 60 | 34, 39, 59 | 3pm3.2i 1340 | 1 ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 ∪ ciun 4955 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ωcom 7842 ≼ cdom 8916 Fincfn 8918 ℝcr 11067 0cc0 11068 1c1 11069 ≤ cle 11209 2c2 12241 [,]cicc 13309 SAlgcsalg 46306 SalGencsalgen 46310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cc 10388 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ioo 13310 df-ioc 13311 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-bases 22833 df-ntr 22907 df-salg 46307 df-salgen 46311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |