| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgensscntex | Structured version Visualization version GIF version | ||
| Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgensscntex.a | ⊢ 𝐴 = (0[,]2) |
| salgensscntex.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salgensscntex.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| salgensscntex.g | ⊢ 𝐺 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| salgensscntex | ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgensscntex.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 2 | 0re 11121 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
| 3 | 2re 12206 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 2, 3 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
| 5 | 2 | leidi 11658 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
| 6 | 1le2 12336 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
| 7 | 5, 6 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
| 8 | iccss 13316 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
| 9 | 4, 7, 8 | mp2an 692 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
| 10 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
| 11 | 9, 10 | sselid 3928 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
| 12 | salgensscntex.a | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 13 | 11, 12 | eleqtrrdi 2844 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
| 14 | snelpwi 5387 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
| 16 | snfi 8972 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
| 17 | fict 9550 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
| 19 | orc 867 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 22 | 15, 21 | jca 511 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 23 | breq1 5096 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
| 24 | difeq2 4069 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
| 25 | 24 | breq1d 5103 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 26 | 23, 25 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 27 | salgensscntex.s | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 28 | 26, 27 | elrab2 3646 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 29 | 22, 28 | sylibr 234 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
| 30 | 29 | rgen 3050 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
| 31 | eqid 2733 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 32 | 31 | rnmptss 7062 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
| 33 | 30, 32 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
| 34 | 1, 33 | eqsstri 3977 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
| 35 | ovex 7385 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
| 36 | 12, 35 | eqeltri 2829 | . . . . 5 ⊢ 𝐴 ∈ V |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
| 38 | 37, 27 | salexct 46457 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
| 39 | 38 | mptru 1548 | . 2 ⊢ 𝑆 ∈ SAlg |
| 40 | ovex 7385 | . . . . . . . . 9 ⊢ (0[,]1) ∈ V | |
| 41 | 40 | mptex 7163 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 42 | 41 | rnex 7846 | . . . . . . 7 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 43 | 1, 42 | eqeltri 2829 | . . . . . 6 ⊢ 𝑋 ∈ V |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝑋 ∈ V) |
| 45 | salgensscntex.g | . . . . 5 ⊢ 𝐺 = (SalGen‘𝑋) | |
| 46 | 1 | unieqi 4870 | . . . . . 6 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 47 | vsnex 5374 | . . . . . . . . 9 ⊢ {𝑦} ∈ V | |
| 48 | 47 | rgenw 3052 | . . . . . . . 8 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
| 49 | dfiun3g 5911 | . . . . . . . 8 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
| 50 | 48, 49 | ax-mp 5 | . . . . . . 7 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 51 | 50 | eqcomi 2742 | . . . . . 6 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
| 52 | iunid 5011 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
| 53 | 46, 51, 52 | 3eqtrri 2761 | . . . . 5 ⊢ (0[,]1) = ∪ 𝑋 |
| 54 | 44, 45, 53 | unisalgen 46463 | . . . 4 ⊢ (⊤ → (0[,]1) ∈ 𝐺) |
| 55 | 54 | mptru 1548 | . . 3 ⊢ (0[,]1) ∈ 𝐺 |
| 56 | eqid 2733 | . . . 4 ⊢ (0[,]1) = (0[,]1) | |
| 57 | 12, 27, 56 | salexct2 46462 | . . 3 ⊢ ¬ (0[,]1) ∈ 𝑆 |
| 58 | nelss 3996 | . . 3 ⊢ (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺 ⊆ 𝑆) | |
| 59 | 55, 57, 58 | mp2an 692 | . 2 ⊢ ¬ 𝐺 ⊆ 𝑆 |
| 60 | 34, 39, 59 | 3pm3.2i 1340 | 1 ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 𝒫 cpw 4549 {csn 4575 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5093 ↦ cmpt 5174 ran crn 5620 ‘cfv 6486 (class class class)co 7352 ωcom 7802 ≼ cdom 8873 Fincfn 8875 ℝcr 11012 0cc0 11013 1c1 11014 ≤ cle 11154 2c2 12187 [,]cicc 13250 SAlgcsalg 46431 SalGencsalgen 46435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-omul 8396 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-acn 9842 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-topgen 17349 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-bases 22862 df-ntr 22936 df-salg 46432 df-salgen 46436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |