Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgensscntex | Structured version Visualization version GIF version |
Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgensscntex.a | ⊢ 𝐴 = (0[,]2) |
salgensscntex.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salgensscntex.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
salgensscntex.g | ⊢ 𝐺 = (SalGen‘𝑋) |
Ref | Expression |
---|---|
salgensscntex | ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salgensscntex.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
2 | 0re 10694 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
3 | 2re 11761 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
4 | 2, 3 | pm3.2i 474 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
5 | 2 | leidi 11225 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
6 | 1le2 11896 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
7 | 5, 6 | pm3.2i 474 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
8 | iccss 12860 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
9 | 4, 7, 8 | mp2an 691 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
10 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
11 | 9, 10 | sseldi 3892 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
12 | salgensscntex.a | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
13 | 11, 12 | eleqtrrdi 2863 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
14 | snelpwi 5309 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
16 | snfi 8627 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
17 | fict 9162 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
19 | orc 864 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
22 | 15, 21 | jca 515 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
23 | breq1 5039 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
24 | difeq2 4024 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
25 | 24 | breq1d 5046 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
26 | 23, 25 | orbi12d 916 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
27 | salgensscntex.s | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
28 | 26, 27 | elrab2 3607 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
29 | 22, 28 | sylibr 237 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
30 | 29 | rgen 3080 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
31 | eqid 2758 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
32 | 31 | rnmptss 6883 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
33 | 30, 32 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
34 | 1, 33 | eqsstri 3928 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
35 | ovex 7189 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
36 | 12, 35 | eqeltri 2848 | . . . . 5 ⊢ 𝐴 ∈ V |
37 | 36 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
38 | 37, 27 | salexct 43375 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
39 | 38 | mptru 1545 | . 2 ⊢ 𝑆 ∈ SAlg |
40 | ovex 7189 | . . . . . . . . 9 ⊢ (0[,]1) ∈ V | |
41 | 40 | mptex 6983 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
42 | 41 | rnex 7628 | . . . . . . 7 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
43 | 1, 42 | eqeltri 2848 | . . . . . 6 ⊢ 𝑋 ∈ V |
44 | 43 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝑋 ∈ V) |
45 | salgensscntex.g | . . . . 5 ⊢ 𝐺 = (SalGen‘𝑋) | |
46 | 1 | unieqi 4814 | . . . . . 6 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
47 | snex 5304 | . . . . . . . . 9 ⊢ {𝑦} ∈ V | |
48 | 47 | rgenw 3082 | . . . . . . . 8 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
49 | dfiun3g 5810 | . . . . . . . 8 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
50 | 48, 49 | ax-mp 5 | . . . . . . 7 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
51 | 50 | eqcomi 2767 | . . . . . 6 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
52 | iunid 4952 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
53 | 46, 51, 52 | 3eqtrri 2786 | . . . . 5 ⊢ (0[,]1) = ∪ 𝑋 |
54 | 44, 45, 53 | unisalgen 43381 | . . . 4 ⊢ (⊤ → (0[,]1) ∈ 𝐺) |
55 | 54 | mptru 1545 | . . 3 ⊢ (0[,]1) ∈ 𝐺 |
56 | eqid 2758 | . . . 4 ⊢ (0[,]1) = (0[,]1) | |
57 | 12, 27, 56 | salexct2 43380 | . . 3 ⊢ ¬ (0[,]1) ∈ 𝑆 |
58 | nelss 3957 | . . 3 ⊢ (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺 ⊆ 𝑆) | |
59 | 55, 57, 58 | mp2an 691 | . 2 ⊢ ¬ 𝐺 ⊆ 𝑆 |
60 | 34, 39, 59 | 3pm3.2i 1336 | 1 ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 399 ∨ wo 844 ∧ w3a 1084 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 ∀wral 3070 {crab 3074 Vcvv 3409 ∖ cdif 3857 ⊆ wss 3860 𝒫 cpw 4497 {csn 4525 ∪ cuni 4801 ∪ ciun 4886 class class class wbr 5036 ↦ cmpt 5116 ran crn 5529 ‘cfv 6340 (class class class)co 7156 ωcom 7585 ≼ cdom 8538 Fincfn 8540 ℝcr 10587 0cc0 10588 1c1 10589 ≤ cle 10727 2c2 11742 [,]cicc 12795 SAlgcsalg 43351 SalGencsalgen 43355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-inf2 9150 ax-cc 9908 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-om 7586 df-1st 7699 df-2nd 7700 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-2o 8119 df-oadd 8122 df-omul 8123 df-er 8305 df-map 8424 df-pm 8425 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-sup 8952 df-inf 8953 df-oi 9020 df-card 9414 df-acn 9417 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-div 11349 df-nn 11688 df-2 11750 df-3 11751 df-n0 11948 df-z 12034 df-uz 12296 df-q 12402 df-rp 12444 df-xneg 12561 df-xadd 12562 df-xmul 12563 df-ioo 12796 df-ioc 12797 df-ico 12798 df-icc 12799 df-fz 12953 df-fzo 13096 df-fl 13224 df-seq 13432 df-exp 13493 df-hash 13754 df-cj 14519 df-re 14520 df-im 14521 df-sqrt 14655 df-abs 14656 df-limsup 14889 df-clim 14906 df-rlim 14907 df-sum 15104 df-topgen 16788 df-psmet 20171 df-xmet 20172 df-met 20173 df-bl 20174 df-mopn 20175 df-top 21607 df-topon 21624 df-bases 21659 df-ntr 21733 df-salg 43352 df-salgen 43356 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |