Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  salgensscntex Structured version   Visualization version   GIF version

Theorem salgensscntex 46359
Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
salgensscntex.a 𝐴 = (0[,]2)
salgensscntex.s 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
salgensscntex.x 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
salgensscntex.g 𝐺 = (SalGen‘𝑋)
Assertion
Ref Expression
salgensscntex (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐺(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem salgensscntex
StepHypRef Expression
1 salgensscntex.x . . 3 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
2 0re 11263 . . . . . . . . . . . 12 0 ∈ ℝ
3 2re 12340 . . . . . . . . . . . 12 2 ∈ ℝ
42, 3pm3.2i 470 . . . . . . . . . . 11 (0 ∈ ℝ ∧ 2 ∈ ℝ)
52leidi 11797 . . . . . . . . . . . 12 0 ≤ 0
6 1le2 12475 . . . . . . . . . . . 12 1 ≤ 2
75, 6pm3.2i 470 . . . . . . . . . . 11 (0 ≤ 0 ∧ 1 ≤ 2)
8 iccss 13455 . . . . . . . . . . 11 (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2))
94, 7, 8mp2an 692 . . . . . . . . . 10 (0[,]1) ⊆ (0[,]2)
10 id 22 . . . . . . . . . 10 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1))
119, 10sselid 3981 . . . . . . . . 9 (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2))
12 salgensscntex.a . . . . . . . . 9 𝐴 = (0[,]2)
1311, 12eleqtrrdi 2852 . . . . . . . 8 (𝑦 ∈ (0[,]1) → 𝑦𝐴)
14 snelpwi 5448 . . . . . . . 8 (𝑦𝐴 → {𝑦} ∈ 𝒫 𝐴)
1513, 14syl 17 . . . . . . 7 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴)
16 snfi 9083 . . . . . . . . . 10 {𝑦} ∈ Fin
17 fict 9693 . . . . . . . . . 10 ({𝑦} ∈ Fin → {𝑦} ≼ ω)
1816, 17ax-mp 5 . . . . . . . . 9 {𝑦} ≼ ω
19 orc 868 . . . . . . . . 9 ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2018, 19ax-mp 5 . . . . . . . 8 ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)
2120a1i 11 . . . . . . 7 (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))
2215, 21jca 511 . . . . . 6 (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
23 breq1 5146 . . . . . . . 8 (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω))
24 difeq2 4120 . . . . . . . . 9 (𝑥 = {𝑦} → (𝐴𝑥) = (𝐴 ∖ {𝑦}))
2524breq1d 5153 . . . . . . . 8 (𝑥 = {𝑦} → ((𝐴𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω))
2623, 25orbi12d 919 . . . . . . 7 (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
27 salgensscntex.s . . . . . . 7 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴𝑥) ≼ ω)}
2826, 27elrab2 3695 . . . . . 6 ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)))
2922, 28sylibr 234 . . . . 5 (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆)
3029rgen 3063 . . . 4 𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆
31 eqid 2737 . . . . 5 (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦})
3231rnmptss 7143 . . . 4 (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆)
3330, 32ax-mp 5 . . 3 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆
341, 33eqsstri 4030 . 2 𝑋𝑆
35 ovex 7464 . . . . . 6 (0[,]2) ∈ V
3612, 35eqeltri 2837 . . . . 5 𝐴 ∈ V
3736a1i 11 . . . 4 (⊤ → 𝐴 ∈ V)
3837, 27salexct 46349 . . 3 (⊤ → 𝑆 ∈ SAlg)
3938mptru 1547 . 2 𝑆 ∈ SAlg
40 ovex 7464 . . . . . . . . 9 (0[,]1) ∈ V
4140mptex 7243 . . . . . . . 8 (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
4241rnex 7932 . . . . . . 7 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V
431, 42eqeltri 2837 . . . . . 6 𝑋 ∈ V
4443a1i 11 . . . . 5 (⊤ → 𝑋 ∈ V)
45 salgensscntex.g . . . . 5 𝐺 = (SalGen‘𝑋)
461unieqi 4919 . . . . . 6 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
47 vsnex 5434 . . . . . . . . 9 {𝑦} ∈ V
4847rgenw 3065 . . . . . . . 8 𝑦 ∈ (0[,]1){𝑦} ∈ V
49 dfiun3g 5978 . . . . . . . 8 (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}))
5048, 49ax-mp 5 . . . . . . 7 𝑦 ∈ (0[,]1){𝑦} = ran (𝑦 ∈ (0[,]1) ↦ {𝑦})
5150eqcomi 2746 . . . . . 6 ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = 𝑦 ∈ (0[,]1){𝑦}
52 iunid 5060 . . . . . 6 𝑦 ∈ (0[,]1){𝑦} = (0[,]1)
5346, 51, 523eqtrri 2770 . . . . 5 (0[,]1) = 𝑋
5444, 45, 53unisalgen 46355 . . . 4 (⊤ → (0[,]1) ∈ 𝐺)
5554mptru 1547 . . 3 (0[,]1) ∈ 𝐺
56 eqid 2737 . . . 4 (0[,]1) = (0[,]1)
5712, 27, 56salexct2 46354 . . 3 ¬ (0[,]1) ∈ 𝑆
58 nelss 4049 . . 3 (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺𝑆)
5955, 57, 58mp2an 692 . 2 ¬ 𝐺𝑆
6034, 39, 593pm3.2i 1340 1 (𝑋𝑆𝑆 ∈ SAlg ∧ ¬ 𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wo 848  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  cdif 3948  wss 3951  𝒫 cpw 4600  {csn 4626   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  ran crn 5686  cfv 6561  (class class class)co 7431  ωcom 7887  cdom 8983  Fincfn 8985  cr 11154  0cc0 11155  1c1 11156  cle 11296  2c2 12321  [,]cicc 13390  SAlgcsalg 46323  SalGencsalgen 46327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-ntr 23028  df-salg 46324  df-salgen 46328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator