Step | Hyp | Ref
| Expression |
1 | | salgensscntex.x |
. . 3
β’ π = ran (π¦ β (0[,]1) β¦ {π¦}) |
2 | | 0re 11212 |
. . . . . . . . . . . 12
β’ 0 β
β |
3 | | 2re 12282 |
. . . . . . . . . . . 12
β’ 2 β
β |
4 | 2, 3 | pm3.2i 471 |
. . . . . . . . . . 11
β’ (0 β
β β§ 2 β β) |
5 | 2 | leidi 11744 |
. . . . . . . . . . . 12
β’ 0 β€
0 |
6 | | 1le2 12417 |
. . . . . . . . . . . 12
β’ 1 β€
2 |
7 | 5, 6 | pm3.2i 471 |
. . . . . . . . . . 11
β’ (0 β€ 0
β§ 1 β€ 2) |
8 | | iccss 13388 |
. . . . . . . . . . 11
β’ (((0
β β β§ 2 β β) β§ (0 β€ 0 β§ 1 β€ 2)) β
(0[,]1) β (0[,]2)) |
9 | 4, 7, 8 | mp2an 690 |
. . . . . . . . . 10
β’ (0[,]1)
β (0[,]2) |
10 | | id 22 |
. . . . . . . . . 10
β’ (π¦ β (0[,]1) β π¦ β
(0[,]1)) |
11 | 9, 10 | sselid 3979 |
. . . . . . . . 9
β’ (π¦ β (0[,]1) β π¦ β
(0[,]2)) |
12 | | salgensscntex.a |
. . . . . . . . 9
β’ π΄ = (0[,]2) |
13 | 11, 12 | eleqtrrdi 2844 |
. . . . . . . 8
β’ (π¦ β (0[,]1) β π¦ β π΄) |
14 | | snelpwi 5442 |
. . . . . . . 8
β’ (π¦ β π΄ β {π¦} β π« π΄) |
15 | 13, 14 | syl 17 |
. . . . . . 7
β’ (π¦ β (0[,]1) β {π¦} β π« π΄) |
16 | | snfi 9040 |
. . . . . . . . . 10
β’ {π¦} β Fin |
17 | | fict 9644 |
. . . . . . . . . 10
β’ ({π¦} β Fin β {π¦} βΌ
Ο) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . 9
β’ {π¦} βΌ
Ο |
19 | | orc 865 |
. . . . . . . . 9
β’ ({π¦} βΌ Ο β ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο)) |
20 | 18, 19 | ax-mp 5 |
. . . . . . . 8
β’ ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο) |
21 | 20 | a1i 11 |
. . . . . . 7
β’ (π¦ β (0[,]1) β ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο)) |
22 | 15, 21 | jca 512 |
. . . . . 6
β’ (π¦ β (0[,]1) β ({π¦} β π« π΄ β§ ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο))) |
23 | | breq1 5150 |
. . . . . . . 8
β’ (π₯ = {π¦} β (π₯ βΌ Ο β {π¦} βΌ Ο)) |
24 | | difeq2 4115 |
. . . . . . . . 9
β’ (π₯ = {π¦} β (π΄ β π₯) = (π΄ β {π¦})) |
25 | 24 | breq1d 5157 |
. . . . . . . 8
β’ (π₯ = {π¦} β ((π΄ β π₯) βΌ Ο β (π΄ β {π¦}) βΌ Ο)) |
26 | 23, 25 | orbi12d 917 |
. . . . . . 7
β’ (π₯ = {π¦} β ((π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο) β ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο))) |
27 | | salgensscntex.s |
. . . . . . 7
β’ π = {π₯ β π« π΄ β£ (π₯ βΌ Ο β¨ (π΄ β π₯) βΌ Ο)} |
28 | 26, 27 | elrab2 3685 |
. . . . . 6
β’ ({π¦} β π β ({π¦} β π« π΄ β§ ({π¦} βΌ Ο β¨ (π΄ β {π¦}) βΌ Ο))) |
29 | 22, 28 | sylibr 233 |
. . . . 5
β’ (π¦ β (0[,]1) β {π¦} β π) |
30 | 29 | rgen 3063 |
. . . 4
β’
βπ¦ β
(0[,]1){π¦} β π |
31 | | eqid 2732 |
. . . . 5
β’ (π¦ β (0[,]1) β¦ {π¦}) = (π¦ β (0[,]1) β¦ {π¦}) |
32 | 31 | rnmptss 7118 |
. . . 4
β’
(βπ¦ β
(0[,]1){π¦} β π β ran (π¦ β (0[,]1) β¦ {π¦}) β π) |
33 | 30, 32 | ax-mp 5 |
. . 3
β’ ran
(π¦ β (0[,]1) β¦
{π¦}) β π |
34 | 1, 33 | eqsstri 4015 |
. 2
β’ π β π |
35 | | ovex 7438 |
. . . . . 6
β’ (0[,]2)
β V |
36 | 12, 35 | eqeltri 2829 |
. . . . 5
β’ π΄ β V |
37 | 36 | a1i 11 |
. . . 4
β’ (β€
β π΄ β
V) |
38 | 37, 27 | salexct 45036 |
. . 3
β’ (β€
β π β
SAlg) |
39 | 38 | mptru 1548 |
. 2
β’ π β SAlg |
40 | | ovex 7438 |
. . . . . . . . 9
β’ (0[,]1)
β V |
41 | 40 | mptex 7221 |
. . . . . . . 8
β’ (π¦ β (0[,]1) β¦ {π¦}) β V |
42 | 41 | rnex 7899 |
. . . . . . 7
β’ ran
(π¦ β (0[,]1) β¦
{π¦}) β
V |
43 | 1, 42 | eqeltri 2829 |
. . . . . 6
β’ π β V |
44 | 43 | a1i 11 |
. . . . 5
β’ (β€
β π β
V) |
45 | | salgensscntex.g |
. . . . 5
β’ πΊ = (SalGenβπ) |
46 | 1 | unieqi 4920 |
. . . . . 6
β’ βͺ π =
βͺ ran (π¦ β (0[,]1) β¦ {π¦}) |
47 | | vsnex 5428 |
. . . . . . . . 9
β’ {π¦} β V |
48 | 47 | rgenw 3065 |
. . . . . . . 8
β’
βπ¦ β
(0[,]1){π¦} β
V |
49 | | dfiun3g 5961 |
. . . . . . . 8
β’
(βπ¦ β
(0[,]1){π¦} β V β
βͺ π¦ β (0[,]1){π¦} = βͺ ran (π¦ β (0[,]1) β¦ {π¦})) |
50 | 48, 49 | ax-mp 5 |
. . . . . . 7
β’ βͺ π¦ β (0[,]1){π¦} = βͺ ran (π¦ β (0[,]1) β¦ {π¦}) |
51 | 50 | eqcomi 2741 |
. . . . . 6
β’ βͺ ran (π¦ β (0[,]1) β¦ {π¦}) = βͺ
π¦ β (0[,]1){π¦} |
52 | | iunid 5062 |
. . . . . 6
β’ βͺ π¦ β (0[,]1){π¦} = (0[,]1) |
53 | 46, 51, 52 | 3eqtrri 2765 |
. . . . 5
β’ (0[,]1) =
βͺ π |
54 | 44, 45, 53 | unisalgen 45042 |
. . . 4
β’ (β€
β (0[,]1) β πΊ) |
55 | 54 | mptru 1548 |
. . 3
β’ (0[,]1)
β πΊ |
56 | | eqid 2732 |
. . . 4
β’ (0[,]1) =
(0[,]1) |
57 | 12, 27, 56 | salexct2 45041 |
. . 3
β’ Β¬
(0[,]1) β π |
58 | | nelss 4046 |
. . 3
β’ (((0[,]1)
β πΊ β§ Β¬
(0[,]1) β π) β
Β¬ πΊ β π) |
59 | 55, 57, 58 | mp2an 690 |
. 2
β’ Β¬
πΊ β π |
60 | 34, 39, 59 | 3pm3.2i 1339 |
1
β’ (π β π β§ π β SAlg β§ Β¬ πΊ β π) |