![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > salgensscntex | Structured version Visualization version GIF version |
Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
salgensscntex.a | ⊢ 𝐴 = (0[,]2) |
salgensscntex.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
salgensscntex.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
salgensscntex.g | ⊢ 𝐺 = (SalGen‘𝑋) |
Ref | Expression |
---|---|
salgensscntex | ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | salgensscntex.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
2 | 0re 11211 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
3 | 2re 12281 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
4 | 2, 3 | pm3.2i 472 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
5 | 2 | leidi 11743 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
6 | 1le2 12416 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
7 | 5, 6 | pm3.2i 472 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
8 | iccss 13387 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
9 | 4, 7, 8 | mp2an 691 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
10 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
11 | 9, 10 | sselid 3978 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
12 | salgensscntex.a | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
13 | 11, 12 | eleqtrrdi 2845 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
14 | snelpwi 5441 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
16 | snfi 9039 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
17 | fict 9643 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
19 | orc 866 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
20 | 18, 19 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
22 | 15, 21 | jca 513 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
23 | breq1 5149 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
24 | difeq2 4114 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
25 | 24 | breq1d 5156 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
26 | 23, 25 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
27 | salgensscntex.s | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
28 | 26, 27 | elrab2 3684 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
29 | 22, 28 | sylibr 233 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
30 | 29 | rgen 3064 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
31 | eqid 2733 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
32 | 31 | rnmptss 7116 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
33 | 30, 32 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
34 | 1, 33 | eqsstri 4014 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
35 | ovex 7436 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
36 | 12, 35 | eqeltri 2830 | . . . . 5 ⊢ 𝐴 ∈ V |
37 | 36 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
38 | 37, 27 | salexct 44984 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
39 | 38 | mptru 1549 | . 2 ⊢ 𝑆 ∈ SAlg |
40 | ovex 7436 | . . . . . . . . 9 ⊢ (0[,]1) ∈ V | |
41 | 40 | mptex 7219 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
42 | 41 | rnex 7897 | . . . . . . 7 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
43 | 1, 42 | eqeltri 2830 | . . . . . 6 ⊢ 𝑋 ∈ V |
44 | 43 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝑋 ∈ V) |
45 | salgensscntex.g | . . . . 5 ⊢ 𝐺 = (SalGen‘𝑋) | |
46 | 1 | unieqi 4919 | . . . . . 6 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
47 | vsnex 5427 | . . . . . . . . 9 ⊢ {𝑦} ∈ V | |
48 | 47 | rgenw 3066 | . . . . . . . 8 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
49 | dfiun3g 5960 | . . . . . . . 8 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
50 | 48, 49 | ax-mp 5 | . . . . . . 7 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
51 | 50 | eqcomi 2742 | . . . . . 6 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
52 | iunid 5061 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
53 | 46, 51, 52 | 3eqtrri 2766 | . . . . 5 ⊢ (0[,]1) = ∪ 𝑋 |
54 | 44, 45, 53 | unisalgen 44990 | . . . 4 ⊢ (⊤ → (0[,]1) ∈ 𝐺) |
55 | 54 | mptru 1549 | . . 3 ⊢ (0[,]1) ∈ 𝐺 |
56 | eqid 2733 | . . . 4 ⊢ (0[,]1) = (0[,]1) | |
57 | 12, 27, 56 | salexct2 44989 | . . 3 ⊢ ¬ (0[,]1) ∈ 𝑆 |
58 | nelss 4045 | . . 3 ⊢ (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺 ⊆ 𝑆) | |
59 | 55, 57, 58 | mp2an 691 | . 2 ⊢ ¬ 𝐺 ⊆ 𝑆 |
60 | 34, 39, 59 | 3pm3.2i 1340 | 1 ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 ∀wral 3062 {crab 3433 Vcvv 3475 ∖ cdif 3943 ⊆ wss 3946 𝒫 cpw 4600 {csn 4626 ∪ cuni 4906 ∪ ciun 4995 class class class wbr 5146 ↦ cmpt 5229 ran crn 5675 ‘cfv 6539 (class class class)co 7403 ωcom 7849 ≼ cdom 8932 Fincfn 8934 ℝcr 11104 0cc0 11105 1c1 11106 ≤ cle 11244 2c2 12262 [,]cicc 13322 SAlgcsalg 44958 SalGencsalgen 44962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-inf2 9631 ax-cc 10425 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4907 df-int 4949 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-se 5630 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-isom 6548 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-2o 8461 df-oadd 8464 df-omul 8465 df-er 8698 df-map 8817 df-pm 8818 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-acn 9932 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-div 11867 df-nn 12208 df-2 12270 df-3 12271 df-n0 12468 df-z 12554 df-uz 12818 df-q 12928 df-rp 12970 df-xneg 13087 df-xadd 13088 df-xmul 13089 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13480 df-fzo 13623 df-fl 13752 df-seq 13962 df-exp 14023 df-hash 14286 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-limsup 15410 df-clim 15427 df-rlim 15428 df-sum 15628 df-topgen 17384 df-psmet 20920 df-xmet 20921 df-met 20922 df-bl 20923 df-mopn 20924 df-top 22377 df-topon 22394 df-bases 22430 df-ntr 22505 df-salg 44959 df-salgen 44963 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |