| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > salgensscntex | Structured version Visualization version GIF version | ||
| Description: This counterexample shows that the sigma-algebra generated by a set is not the smallest sigma-algebra containing the set, if we consider also sigma-algebras with a larger base set. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| salgensscntex.a | ⊢ 𝐴 = (0[,]2) |
| salgensscntex.s | ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} |
| salgensscntex.x | ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| salgensscntex.g | ⊢ 𝐺 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| salgensscntex | ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | salgensscntex.x | . . 3 ⊢ 𝑋 = ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 2 | 0re 11237 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
| 3 | 2re 12314 | . . . . . . . . . . . 12 ⊢ 2 ∈ ℝ | |
| 4 | 2, 3 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ∈ ℝ ∧ 2 ∈ ℝ) |
| 5 | 2 | leidi 11771 | . . . . . . . . . . . 12 ⊢ 0 ≤ 0 |
| 6 | 1le2 12449 | . . . . . . . . . . . 12 ⊢ 1 ≤ 2 | |
| 7 | 5, 6 | pm3.2i 470 | . . . . . . . . . . 11 ⊢ (0 ≤ 0 ∧ 1 ≤ 2) |
| 8 | iccss 13431 | . . . . . . . . . . 11 ⊢ (((0 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 0 ∧ 1 ≤ 2)) → (0[,]1) ⊆ (0[,]2)) | |
| 9 | 4, 7, 8 | mp2an 692 | . . . . . . . . . 10 ⊢ (0[,]1) ⊆ (0[,]2) |
| 10 | id 22 | . . . . . . . . . 10 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]1)) | |
| 11 | 9, 10 | sselid 3956 | . . . . . . . . 9 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ (0[,]2)) |
| 12 | salgensscntex.a | . . . . . . . . 9 ⊢ 𝐴 = (0[,]2) | |
| 13 | 11, 12 | eleqtrrdi 2845 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) → 𝑦 ∈ 𝐴) |
| 14 | snelpwi 5418 | . . . . . . . 8 ⊢ (𝑦 ∈ 𝐴 → {𝑦} ∈ 𝒫 𝐴) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝒫 𝐴) |
| 16 | snfi 9057 | . . . . . . . . . 10 ⊢ {𝑦} ∈ Fin | |
| 17 | fict 9667 | . . . . . . . . . 10 ⊢ ({𝑦} ∈ Fin → {𝑦} ≼ ω) | |
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ {𝑦} ≼ ω |
| 19 | orc 867 | . . . . . . . . 9 ⊢ ({𝑦} ≼ ω → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . . . . 8 ⊢ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω) |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 22 | 15, 21 | jca 511 | . . . . . 6 ⊢ (𝑦 ∈ (0[,]1) → ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 23 | breq1 5122 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → (𝑥 ≼ ω ↔ {𝑦} ≼ ω)) | |
| 24 | difeq2 4095 | . . . . . . . . 9 ⊢ (𝑥 = {𝑦} → (𝐴 ∖ 𝑥) = (𝐴 ∖ {𝑦})) | |
| 25 | 24 | breq1d 5129 | . . . . . . . 8 ⊢ (𝑥 = {𝑦} → ((𝐴 ∖ 𝑥) ≼ ω ↔ (𝐴 ∖ {𝑦}) ≼ ω)) |
| 26 | 23, 25 | orbi12d 918 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → ((𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω) ↔ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 27 | salgensscntex.s | . . . . . . 7 ⊢ 𝑆 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑥 ≼ ω ∨ (𝐴 ∖ 𝑥) ≼ ω)} | |
| 28 | 26, 27 | elrab2 3674 | . . . . . 6 ⊢ ({𝑦} ∈ 𝑆 ↔ ({𝑦} ∈ 𝒫 𝐴 ∧ ({𝑦} ≼ ω ∨ (𝐴 ∖ {𝑦}) ≼ ω))) |
| 29 | 22, 28 | sylibr 234 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) → {𝑦} ∈ 𝑆) |
| 30 | 29 | rgen 3053 | . . . 4 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 |
| 31 | eqid 2735 | . . . . 5 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) = (𝑦 ∈ (0[,]1) ↦ {𝑦}) | |
| 32 | 31 | rnmptss 7113 | . . . 4 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ 𝑆 → ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆) |
| 33 | 30, 32 | ax-mp 5 | . . 3 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ⊆ 𝑆 |
| 34 | 1, 33 | eqsstri 4005 | . 2 ⊢ 𝑋 ⊆ 𝑆 |
| 35 | ovex 7438 | . . . . . 6 ⊢ (0[,]2) ∈ V | |
| 36 | 12, 35 | eqeltri 2830 | . . . . 5 ⊢ 𝐴 ∈ V |
| 37 | 36 | a1i 11 | . . . 4 ⊢ (⊤ → 𝐴 ∈ V) |
| 38 | 37, 27 | salexct 46363 | . . 3 ⊢ (⊤ → 𝑆 ∈ SAlg) |
| 39 | 38 | mptru 1547 | . 2 ⊢ 𝑆 ∈ SAlg |
| 40 | ovex 7438 | . . . . . . . . 9 ⊢ (0[,]1) ∈ V | |
| 41 | 40 | mptex 7215 | . . . . . . . 8 ⊢ (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 42 | 41 | rnex 7906 | . . . . . . 7 ⊢ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) ∈ V |
| 43 | 1, 42 | eqeltri 2830 | . . . . . 6 ⊢ 𝑋 ∈ V |
| 44 | 43 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝑋 ∈ V) |
| 45 | salgensscntex.g | . . . . 5 ⊢ 𝐺 = (SalGen‘𝑋) | |
| 46 | 1 | unieqi 4895 | . . . . . 6 ⊢ ∪ 𝑋 = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 47 | vsnex 5404 | . . . . . . . . 9 ⊢ {𝑦} ∈ V | |
| 48 | 47 | rgenw 3055 | . . . . . . . 8 ⊢ ∀𝑦 ∈ (0[,]1){𝑦} ∈ V |
| 49 | dfiun3g 5947 | . . . . . . . 8 ⊢ (∀𝑦 ∈ (0[,]1){𝑦} ∈ V → ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦})) | |
| 50 | 48, 49 | ax-mp 5 | . . . . . . 7 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) |
| 51 | 50 | eqcomi 2744 | . . . . . 6 ⊢ ∪ ran (𝑦 ∈ (0[,]1) ↦ {𝑦}) = ∪ 𝑦 ∈ (0[,]1){𝑦} |
| 52 | iunid 5036 | . . . . . 6 ⊢ ∪ 𝑦 ∈ (0[,]1){𝑦} = (0[,]1) | |
| 53 | 46, 51, 52 | 3eqtrri 2763 | . . . . 5 ⊢ (0[,]1) = ∪ 𝑋 |
| 54 | 44, 45, 53 | unisalgen 46369 | . . . 4 ⊢ (⊤ → (0[,]1) ∈ 𝐺) |
| 55 | 54 | mptru 1547 | . . 3 ⊢ (0[,]1) ∈ 𝐺 |
| 56 | eqid 2735 | . . . 4 ⊢ (0[,]1) = (0[,]1) | |
| 57 | 12, 27, 56 | salexct2 46368 | . . 3 ⊢ ¬ (0[,]1) ∈ 𝑆 |
| 58 | nelss 4024 | . . 3 ⊢ (((0[,]1) ∈ 𝐺 ∧ ¬ (0[,]1) ∈ 𝑆) → ¬ 𝐺 ⊆ 𝑆) | |
| 59 | 55, 57, 58 | mp2an 692 | . 2 ⊢ ¬ 𝐺 ⊆ 𝑆 |
| 60 | 34, 39, 59 | 3pm3.2i 1340 | 1 ⊢ (𝑋 ⊆ 𝑆 ∧ 𝑆 ∈ SAlg ∧ ¬ 𝐺 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ⊤wtru 1541 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∖ cdif 3923 ⊆ wss 3926 𝒫 cpw 4575 {csn 4601 ∪ cuni 4883 ∪ ciun 4967 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ‘cfv 6531 (class class class)co 7405 ωcom 7861 ≼ cdom 8957 Fincfn 8959 ℝcr 11128 0cc0 11129 1c1 11130 ≤ cle 11270 2c2 12295 [,]cicc 13365 SAlgcsalg 46337 SalGencsalgen 46341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cc 10449 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-omul 8485 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-acn 9956 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ioc 13367 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-limsup 15487 df-clim 15504 df-rlim 15505 df-sum 15703 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-ntr 22958 df-salg 46338 df-salgen 46342 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |