MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrexf Structured version   Visualization version   GIF version

Theorem ssrexf 3883
Description: restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
ssrexf.1 𝑥𝐴
ssrexf.2 𝑥𝐵
Assertion
Ref Expression
ssrexf (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))

Proof of Theorem ssrexf
StepHypRef Expression
1 ssrexf.1 . . . 4 𝑥𝐴
2 ssrexf.2 . . . 4 𝑥𝐵
31, 2nfss 3813 . . 3 𝑥 𝐴𝐵
4 ssel 3814 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
54anim1d 604 . . 3 (𝐴𝐵 → ((𝑥𝐴𝜑) → (𝑥𝐵𝜑)))
63, 5eximd 2201 . 2 (𝐴𝐵 → (∃𝑥(𝑥𝐴𝜑) → ∃𝑥(𝑥𝐵𝜑)))
7 df-rex 3095 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
8 df-rex 3095 . 2 (∃𝑥𝐵 𝜑 ↔ ∃𝑥(𝑥𝐵𝜑))
96, 7, 83imtr4g 288 1 (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wex 1823  wcel 2106  wnfc 2918  wrex 3090  wss 3791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-ext 2753
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ral 3094  df-rex 3095  df-in 3798  df-ss 3805
This theorem is referenced by:  iunxdif3  4840  stoweidlem34  41170
  Copyright terms: Public domain W3C validator