MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dnrinv Structured version   Visualization version   GIF version

Theorem smndex2dnrinv 18554
Description: The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
Assertion
Ref Expression
smndex2dnrinv 𝑓𝐵 (𝐷𝑓) ≠ 0

Proof of Theorem smndex2dnrinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2944 . . 3 ((𝐷𝑓) ≠ 0 ↔ ¬ (𝐷𝑓) = 0 )
21ralbii 3092 . 2 (∀𝑓𝐵 (𝐷𝑓) ≠ 0 ↔ ∀𝑓𝐵 ¬ (𝐷𝑓) = 0 )
3 smndex2dbas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
4 smndex2dbas.b . . . 4 𝐵 = (Base‘𝑀)
53, 4efmndbasf 18514 . . 3 (𝑓𝐵𝑓:ℕ0⟶ℕ0)
6 1nn0 12249 . . . . . . . . . . 11 1 ∈ ℕ0
7 nn0z 12343 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 0zd 12331 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0 → 0 ∈ ℤ)
9 zneo 12403 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · 0) + 1))
107, 8, 9syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ ((2 · 0) + 1))
11 2t0e0 12142 . . . . . . . . . . . . . . . . . . 19 (2 · 0) = 0
1211oveq1i 7285 . . . . . . . . . . . . . . . . . 18 ((2 · 0) + 1) = (0 + 1)
13 0p1e1 12095 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
1412, 13eqtri 2766 . . . . . . . . . . . . . . . . 17 ((2 · 0) + 1) = 1
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → ((2 · 0) + 1) = 1)
1610, 15neeqtrd 3013 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ 1)
1716necomd 2999 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → 1 ≠ (2 · 𝑥))
1817neneqd 2948 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0 → ¬ 1 = (2 · 𝑥))
1918nrex 3197 . . . . . . . . . . . 12 ¬ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)
20 1ex 10971 . . . . . . . . . . . . 13 1 ∈ V
21 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑦 = 1 → (𝑦 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2221rexbidv 3226 . . . . . . . . . . . . 13 (𝑦 = 1 → (∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)))
2320, 22elab 3609 . . . . . . . . . . . 12 (1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥))
2419, 23mtbir 323 . . . . . . . . . . 11 ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
25 nelss 3984 . . . . . . . . . . 11 ((1 ∈ ℕ0 ∧ ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}) → ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
266, 24, 25mp2an 689 . . . . . . . . . 10 ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
2726intnan 487 . . . . . . . . 9 ¬ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
28 eqss 3936 . . . . . . . . 9 ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0 ↔ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}))
2927, 28mtbir 323 . . . . . . . 8 ¬ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0
30 smndex2dbas.d . . . . . . . . . 10 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
3130rnmpt 5864 . . . . . . . . 9 ran 𝐷 = {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
3231eqeq1i 2743 . . . . . . . 8 (ran 𝐷 = ℕ0 ↔ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0)
3329, 32mtbir 323 . . . . . . 7 ¬ ran 𝐷 = ℕ0
3433olci 863 . . . . . 6 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0)
35 ianor 979 . . . . . . 7 (¬ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0) ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
36 df-fo 6439 . . . . . . 7 (𝐷:ℕ0onto→ℕ0 ↔ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0))
3735, 36xchnxbir 333 . . . . . 6 𝐷:ℕ0onto→ℕ0 ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
3834, 37mpbir 230 . . . . 5 ¬ 𝐷:ℕ0onto→ℕ0
3938a1i 11 . . . 4 (𝑓:ℕ0⟶ℕ0 → ¬ 𝐷:ℕ0onto→ℕ0)
40 smndex2dbas.0 . . . . . 6 0 = (0g𝑀)
413, 4, 40, 30smndex2dbas 18553 . . . . 5 𝐷𝐵
423, 4efmndbasf 18514 . . . . 5 (𝐷𝐵𝐷:ℕ0⟶ℕ0)
43 simpl 483 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0⟶ℕ0)
44 simpl 483 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝑓:ℕ0⟶ℕ0)
4544adantl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝑓:ℕ0⟶ℕ0)
46 nn0ex 12239 . . . . . . . . . . . . 13 0 ∈ V
473efmndid 18527 . . . . . . . . . . . . 13 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ( I ↾ ℕ0) = (0g𝑀)
4940, 48eqtr4i 2769 . . . . . . . . . . 11 0 = ( I ↾ ℕ0)
5049eqeq2i 2751 . . . . . . . . . 10 ((𝐷𝑓) = 0 ↔ (𝐷𝑓) = ( I ↾ ℕ0))
5150biimpi 215 . . . . . . . . 9 ((𝐷𝑓) = 0 → (𝐷𝑓) = ( I ↾ ℕ0))
5251adantl 482 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → (𝐷𝑓) = ( I ↾ ℕ0))
5352adantl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → (𝐷𝑓) = ( I ↾ ℕ0))
54 fcofo 7160 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = ( I ↾ ℕ0)) → 𝐷:ℕ0onto→ℕ0)
5543, 45, 53, 54syl3anc 1370 . . . . . 6 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0onto→ℕ0)
5655ex 413 . . . . 5 (𝐷:ℕ0⟶ℕ0 → ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0))
5741, 42, 56mp2b 10 . . . 4 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0)
5839, 57mtand 813 . . 3 (𝑓:ℕ0⟶ℕ0 → ¬ (𝐷𝑓) = 0 )
595, 58syl 17 . 2 (𝑓𝐵 → ¬ (𝐷𝑓) = 0 )
602, 59mprgbir 3079 1 𝑓𝐵 (𝐷𝑓) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887  cmpt 5157   I cid 5488  ran crn 5590  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  ontowfo 6431  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  2c2 12028  0cn0 12233  cz 12319  Basecbs 16912  0gc0g 17150  EndoFMndcefmnd 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-tset 16981  df-0g 17152  df-efmnd 18508
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator