MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dnrinv Structured version   Visualization version   GIF version

Theorem smndex2dnrinv 18831
Description: The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
Assertion
Ref Expression
smndex2dnrinv 𝑓𝐵 (𝐷𝑓) ≠ 0

Proof of Theorem smndex2dnrinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2930 . . 3 ((𝐷𝑓) ≠ 0 ↔ ¬ (𝐷𝑓) = 0 )
21ralbii 3079 . 2 (∀𝑓𝐵 (𝐷𝑓) ≠ 0 ↔ ∀𝑓𝐵 ¬ (𝐷𝑓) = 0 )
3 smndex2dbas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
4 smndex2dbas.b . . . 4 𝐵 = (Base‘𝑀)
53, 4efmndbasf 18791 . . 3 (𝑓𝐵𝑓:ℕ0⟶ℕ0)
6 1nn0 12408 . . . . . . . . . . 11 1 ∈ ℕ0
7 nn0z 12503 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 0zd 12491 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0 → 0 ∈ ℤ)
9 zneo 12566 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · 0) + 1))
107, 8, 9syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ ((2 · 0) + 1))
11 2t0e0 12300 . . . . . . . . . . . . . . . . . . 19 (2 · 0) = 0
1211oveq1i 7365 . . . . . . . . . . . . . . . . . 18 ((2 · 0) + 1) = (0 + 1)
13 0p1e1 12253 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
1412, 13eqtri 2756 . . . . . . . . . . . . . . . . 17 ((2 · 0) + 1) = 1
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → ((2 · 0) + 1) = 1)
1610, 15neeqtrd 2998 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ 1)
1716necomd 2984 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → 1 ≠ (2 · 𝑥))
1817neneqd 2934 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0 → ¬ 1 = (2 · 𝑥))
1918nrex 3061 . . . . . . . . . . . 12 ¬ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)
20 1ex 11119 . . . . . . . . . . . . 13 1 ∈ V
21 eqeq1 2737 . . . . . . . . . . . . . 14 (𝑦 = 1 → (𝑦 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2221rexbidv 3157 . . . . . . . . . . . . 13 (𝑦 = 1 → (∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)))
2320, 22elab 3631 . . . . . . . . . . . 12 (1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥))
2419, 23mtbir 323 . . . . . . . . . . 11 ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
25 nelss 3996 . . . . . . . . . . 11 ((1 ∈ ℕ0 ∧ ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}) → ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
266, 24, 25mp2an 692 . . . . . . . . . 10 ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
2726intnan 486 . . . . . . . . 9 ¬ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
28 eqss 3946 . . . . . . . . 9 ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0 ↔ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}))
2927, 28mtbir 323 . . . . . . . 8 ¬ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0
30 smndex2dbas.d . . . . . . . . . 10 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
3130rnmpt 5903 . . . . . . . . 9 ran 𝐷 = {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
3231eqeq1i 2738 . . . . . . . 8 (ran 𝐷 = ℕ0 ↔ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0)
3329, 32mtbir 323 . . . . . . 7 ¬ ran 𝐷 = ℕ0
3433olci 866 . . . . . 6 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0)
35 ianor 983 . . . . . . 7 (¬ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0) ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
36 df-fo 6495 . . . . . . 7 (𝐷:ℕ0onto→ℕ0 ↔ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0))
3735, 36xchnxbir 333 . . . . . 6 𝐷:ℕ0onto→ℕ0 ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
3834, 37mpbir 231 . . . . 5 ¬ 𝐷:ℕ0onto→ℕ0
3938a1i 11 . . . 4 (𝑓:ℕ0⟶ℕ0 → ¬ 𝐷:ℕ0onto→ℕ0)
40 smndex2dbas.0 . . . . . 6 0 = (0g𝑀)
413, 4, 40, 30smndex2dbas 18830 . . . . 5 𝐷𝐵
423, 4efmndbasf 18791 . . . . 5 (𝐷𝐵𝐷:ℕ0⟶ℕ0)
43 simpl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0⟶ℕ0)
44 simpl 482 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝑓:ℕ0⟶ℕ0)
4544adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝑓:ℕ0⟶ℕ0)
46 nn0ex 12398 . . . . . . . . . . . . 13 0 ∈ V
473efmndid 18804 . . . . . . . . . . . . 13 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ( I ↾ ℕ0) = (0g𝑀)
4940, 48eqtr4i 2759 . . . . . . . . . . 11 0 = ( I ↾ ℕ0)
5049eqeq2i 2746 . . . . . . . . . 10 ((𝐷𝑓) = 0 ↔ (𝐷𝑓) = ( I ↾ ℕ0))
5150biimpi 216 . . . . . . . . 9 ((𝐷𝑓) = 0 → (𝐷𝑓) = ( I ↾ ℕ0))
5251adantl 481 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → (𝐷𝑓) = ( I ↾ ℕ0))
5352adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → (𝐷𝑓) = ( I ↾ ℕ0))
54 fcofo 7231 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = ( I ↾ ℕ0)) → 𝐷:ℕ0onto→ℕ0)
5543, 45, 53, 54syl3anc 1373 . . . . . 6 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0onto→ℕ0)
5655ex 412 . . . . 5 (𝐷:ℕ0⟶ℕ0 → ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0))
5741, 42, 56mp2b 10 . . . 4 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0)
5839, 57mtand 815 . . 3 (𝑓:ℕ0⟶ℕ0 → ¬ (𝐷𝑓) = 0 )
595, 58syl 17 . 2 (𝑓𝐵 → ¬ (𝐷𝑓) = 0 )
602, 59mprgbir 3055 1 𝑓𝐵 (𝐷𝑓) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  Vcvv 3437  wss 3898  cmpt 5176   I cid 5515  ran crn 5622  cres 5623  ccom 5625   Fn wfn 6484  wf 6485  ontowfo 6487  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022  2c2 12191  0cn0 12392  cz 12479  Basecbs 17127  0gc0g 17350  EndoFMndcefmnd 18784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-tset 17187  df-0g 17352  df-efmnd 18785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator