MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dnrinv Structured version   Visualization version   GIF version

Theorem smndex2dnrinv 18818
Description: The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
Assertion
Ref Expression
smndex2dnrinv 𝑓𝐵 (𝐷𝑓) ≠ 0

Proof of Theorem smndex2dnrinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2929 . . 3 ((𝐷𝑓) ≠ 0 ↔ ¬ (𝐷𝑓) = 0 )
21ralbii 3078 . 2 (∀𝑓𝐵 (𝐷𝑓) ≠ 0 ↔ ∀𝑓𝐵 ¬ (𝐷𝑓) = 0 )
3 smndex2dbas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
4 smndex2dbas.b . . . 4 𝐵 = (Base‘𝑀)
53, 4efmndbasf 18778 . . 3 (𝑓𝐵𝑓:ℕ0⟶ℕ0)
6 1nn0 12392 . . . . . . . . . . 11 1 ∈ ℕ0
7 nn0z 12488 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 0zd 12475 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0 → 0 ∈ ℤ)
9 zneo 12551 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · 0) + 1))
107, 8, 9syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ ((2 · 0) + 1))
11 2t0e0 12284 . . . . . . . . . . . . . . . . . . 19 (2 · 0) = 0
1211oveq1i 7351 . . . . . . . . . . . . . . . . . 18 ((2 · 0) + 1) = (0 + 1)
13 0p1e1 12237 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
1412, 13eqtri 2754 . . . . . . . . . . . . . . . . 17 ((2 · 0) + 1) = 1
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → ((2 · 0) + 1) = 1)
1610, 15neeqtrd 2997 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ 1)
1716necomd 2983 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → 1 ≠ (2 · 𝑥))
1817neneqd 2933 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0 → ¬ 1 = (2 · 𝑥))
1918nrex 3060 . . . . . . . . . . . 12 ¬ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)
20 1ex 11103 . . . . . . . . . . . . 13 1 ∈ V
21 eqeq1 2735 . . . . . . . . . . . . . 14 (𝑦 = 1 → (𝑦 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2221rexbidv 3156 . . . . . . . . . . . . 13 (𝑦 = 1 → (∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)))
2320, 22elab 3630 . . . . . . . . . . . 12 (1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥))
2419, 23mtbir 323 . . . . . . . . . . 11 ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
25 nelss 3995 . . . . . . . . . . 11 ((1 ∈ ℕ0 ∧ ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}) → ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
266, 24, 25mp2an 692 . . . . . . . . . 10 ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
2726intnan 486 . . . . . . . . 9 ¬ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
28 eqss 3945 . . . . . . . . 9 ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0 ↔ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}))
2927, 28mtbir 323 . . . . . . . 8 ¬ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0
30 smndex2dbas.d . . . . . . . . . 10 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
3130rnmpt 5892 . . . . . . . . 9 ran 𝐷 = {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
3231eqeq1i 2736 . . . . . . . 8 (ran 𝐷 = ℕ0 ↔ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0)
3329, 32mtbir 323 . . . . . . 7 ¬ ran 𝐷 = ℕ0
3433olci 866 . . . . . 6 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0)
35 ianor 983 . . . . . . 7 (¬ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0) ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
36 df-fo 6482 . . . . . . 7 (𝐷:ℕ0onto→ℕ0 ↔ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0))
3735, 36xchnxbir 333 . . . . . 6 𝐷:ℕ0onto→ℕ0 ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
3834, 37mpbir 231 . . . . 5 ¬ 𝐷:ℕ0onto→ℕ0
3938a1i 11 . . . 4 (𝑓:ℕ0⟶ℕ0 → ¬ 𝐷:ℕ0onto→ℕ0)
40 smndex2dbas.0 . . . . . 6 0 = (0g𝑀)
413, 4, 40, 30smndex2dbas 18817 . . . . 5 𝐷𝐵
423, 4efmndbasf 18778 . . . . 5 (𝐷𝐵𝐷:ℕ0⟶ℕ0)
43 simpl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0⟶ℕ0)
44 simpl 482 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝑓:ℕ0⟶ℕ0)
4544adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝑓:ℕ0⟶ℕ0)
46 nn0ex 12382 . . . . . . . . . . . . 13 0 ∈ V
473efmndid 18791 . . . . . . . . . . . . 13 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ( I ↾ ℕ0) = (0g𝑀)
4940, 48eqtr4i 2757 . . . . . . . . . . 11 0 = ( I ↾ ℕ0)
5049eqeq2i 2744 . . . . . . . . . 10 ((𝐷𝑓) = 0 ↔ (𝐷𝑓) = ( I ↾ ℕ0))
5150biimpi 216 . . . . . . . . 9 ((𝐷𝑓) = 0 → (𝐷𝑓) = ( I ↾ ℕ0))
5251adantl 481 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → (𝐷𝑓) = ( I ↾ ℕ0))
5352adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → (𝐷𝑓) = ( I ↾ ℕ0))
54 fcofo 7217 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = ( I ↾ ℕ0)) → 𝐷:ℕ0onto→ℕ0)
5543, 45, 53, 54syl3anc 1373 . . . . . 6 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0onto→ℕ0)
5655ex 412 . . . . 5 (𝐷:ℕ0⟶ℕ0 → ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0))
5741, 42, 56mp2b 10 . . . 4 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0)
5839, 57mtand 815 . . 3 (𝑓:ℕ0⟶ℕ0 → ¬ (𝐷𝑓) = 0 )
595, 58syl 17 . 2 (𝑓𝐵 → ¬ (𝐷𝑓) = 0 )
602, 59mprgbir 3054 1 𝑓𝐵 (𝐷𝑓) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  cmpt 5167   I cid 5505  ran crn 5612  cres 5613  ccom 5615   Fn wfn 6471  wf 6472  ontowfo 6474  cfv 6476  (class class class)co 7341  0cc0 11001  1c1 11002   + caddc 11004   · cmul 11006  2c2 12175  0cn0 12376  cz 12463  Basecbs 17115  0gc0g 17338  EndoFMndcefmnd 18771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-tset 17175  df-0g 17340  df-efmnd 18772
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator