MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dnrinv Structured version   Visualization version   GIF version

Theorem smndex2dnrinv 18941
Description: The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
Assertion
Ref Expression
smndex2dnrinv 𝑓𝐵 (𝐷𝑓) ≠ 0

Proof of Theorem smndex2dnrinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2939 . . 3 ((𝐷𝑓) ≠ 0 ↔ ¬ (𝐷𝑓) = 0 )
21ralbii 3091 . 2 (∀𝑓𝐵 (𝐷𝑓) ≠ 0 ↔ ∀𝑓𝐵 ¬ (𝐷𝑓) = 0 )
3 smndex2dbas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
4 smndex2dbas.b . . . 4 𝐵 = (Base‘𝑀)
53, 4efmndbasf 18901 . . 3 (𝑓𝐵𝑓:ℕ0⟶ℕ0)
6 1nn0 12540 . . . . . . . . . . 11 1 ∈ ℕ0
7 nn0z 12636 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 0zd 12623 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0 → 0 ∈ ℤ)
9 zneo 12699 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · 0) + 1))
107, 8, 9syl2anc 584 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ ((2 · 0) + 1))
11 2t0e0 12433 . . . . . . . . . . . . . . . . . . 19 (2 · 0) = 0
1211oveq1i 7441 . . . . . . . . . . . . . . . . . 18 ((2 · 0) + 1) = (0 + 1)
13 0p1e1 12386 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
1412, 13eqtri 2763 . . . . . . . . . . . . . . . . 17 ((2 · 0) + 1) = 1
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → ((2 · 0) + 1) = 1)
1610, 15neeqtrd 3008 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ 1)
1716necomd 2994 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → 1 ≠ (2 · 𝑥))
1817neneqd 2943 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0 → ¬ 1 = (2 · 𝑥))
1918nrex 3072 . . . . . . . . . . . 12 ¬ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)
20 1ex 11255 . . . . . . . . . . . . 13 1 ∈ V
21 eqeq1 2739 . . . . . . . . . . . . . 14 (𝑦 = 1 → (𝑦 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2221rexbidv 3177 . . . . . . . . . . . . 13 (𝑦 = 1 → (∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)))
2320, 22elab 3681 . . . . . . . . . . . 12 (1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥))
2419, 23mtbir 323 . . . . . . . . . . 11 ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
25 nelss 4061 . . . . . . . . . . 11 ((1 ∈ ℕ0 ∧ ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}) → ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
266, 24, 25mp2an 692 . . . . . . . . . 10 ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
2726intnan 486 . . . . . . . . 9 ¬ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
28 eqss 4011 . . . . . . . . 9 ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0 ↔ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}))
2927, 28mtbir 323 . . . . . . . 8 ¬ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0
30 smndex2dbas.d . . . . . . . . . 10 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
3130rnmpt 5971 . . . . . . . . 9 ran 𝐷 = {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
3231eqeq1i 2740 . . . . . . . 8 (ran 𝐷 = ℕ0 ↔ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0)
3329, 32mtbir 323 . . . . . . 7 ¬ ran 𝐷 = ℕ0
3433olci 866 . . . . . 6 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0)
35 ianor 983 . . . . . . 7 (¬ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0) ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
36 df-fo 6569 . . . . . . 7 (𝐷:ℕ0onto→ℕ0 ↔ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0))
3735, 36xchnxbir 333 . . . . . 6 𝐷:ℕ0onto→ℕ0 ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
3834, 37mpbir 231 . . . . 5 ¬ 𝐷:ℕ0onto→ℕ0
3938a1i 11 . . . 4 (𝑓:ℕ0⟶ℕ0 → ¬ 𝐷:ℕ0onto→ℕ0)
40 smndex2dbas.0 . . . . . 6 0 = (0g𝑀)
413, 4, 40, 30smndex2dbas 18940 . . . . 5 𝐷𝐵
423, 4efmndbasf 18901 . . . . 5 (𝐷𝐵𝐷:ℕ0⟶ℕ0)
43 simpl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0⟶ℕ0)
44 simpl 482 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝑓:ℕ0⟶ℕ0)
4544adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝑓:ℕ0⟶ℕ0)
46 nn0ex 12530 . . . . . . . . . . . . 13 0 ∈ V
473efmndid 18914 . . . . . . . . . . . . 13 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ( I ↾ ℕ0) = (0g𝑀)
4940, 48eqtr4i 2766 . . . . . . . . . . 11 0 = ( I ↾ ℕ0)
5049eqeq2i 2748 . . . . . . . . . 10 ((𝐷𝑓) = 0 ↔ (𝐷𝑓) = ( I ↾ ℕ0))
5150biimpi 216 . . . . . . . . 9 ((𝐷𝑓) = 0 → (𝐷𝑓) = ( I ↾ ℕ0))
5251adantl 481 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → (𝐷𝑓) = ( I ↾ ℕ0))
5352adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → (𝐷𝑓) = ( I ↾ ℕ0))
54 fcofo 7308 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = ( I ↾ ℕ0)) → 𝐷:ℕ0onto→ℕ0)
5543, 45, 53, 54syl3anc 1370 . . . . . 6 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0onto→ℕ0)
5655ex 412 . . . . 5 (𝐷:ℕ0⟶ℕ0 → ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0))
5741, 42, 56mp2b 10 . . . 4 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0)
5839, 57mtand 816 . . 3 (𝑓:ℕ0⟶ℕ0 → ¬ (𝐷𝑓) = 0 )
595, 58syl 17 . 2 (𝑓𝐵 → ¬ (𝐷𝑓) = 0 )
602, 59mprgbir 3066 1 𝑓𝐵 (𝐷𝑓) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  Vcvv 3478  wss 3963  cmpt 5231   I cid 5582  ran crn 5690  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  2c2 12319  0cn0 12524  cz 12611  Basecbs 17245  0gc0g 17486  EndoFMndcefmnd 18894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-tset 17317  df-0g 17488  df-efmnd 18895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator