MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex2dnrinv Structured version   Visualization version   GIF version

Theorem smndex2dnrinv 18469
Description: The doubling function 𝐷 has no right inverse in the monoid of endofunctions on 0. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
smndex2dbas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex2dbas.b 𝐵 = (Base‘𝑀)
smndex2dbas.0 0 = (0g𝑀)
smndex2dbas.d 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
Assertion
Ref Expression
smndex2dnrinv 𝑓𝐵 (𝐷𝑓) ≠ 0

Proof of Theorem smndex2dnrinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2943 . . 3 ((𝐷𝑓) ≠ 0 ↔ ¬ (𝐷𝑓) = 0 )
21ralbii 3090 . 2 (∀𝑓𝐵 (𝐷𝑓) ≠ 0 ↔ ∀𝑓𝐵 ¬ (𝐷𝑓) = 0 )
3 smndex2dbas.m . . . 4 𝑀 = (EndoFMnd‘ℕ0)
4 smndex2dbas.b . . . 4 𝐵 = (Base‘𝑀)
53, 4efmndbasf 18429 . . 3 (𝑓𝐵𝑓:ℕ0⟶ℕ0)
6 1nn0 12179 . . . . . . . . . . 11 1 ∈ ℕ0
7 nn0z 12273 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
8 0zd 12261 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℕ0 → 0 ∈ ℤ)
9 zneo 12333 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ 0 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · 0) + 1))
107, 8, 9syl2anc 583 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ ((2 · 0) + 1))
11 2t0e0 12072 . . . . . . . . . . . . . . . . . . 19 (2 · 0) = 0
1211oveq1i 7265 . . . . . . . . . . . . . . . . . 18 ((2 · 0) + 1) = (0 + 1)
13 0p1e1 12025 . . . . . . . . . . . . . . . . . 18 (0 + 1) = 1
1412, 13eqtri 2766 . . . . . . . . . . . . . . . . 17 ((2 · 0) + 1) = 1
1514a1i 11 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℕ0 → ((2 · 0) + 1) = 1)
1610, 15neeqtrd 3012 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℕ0 → (2 · 𝑥) ≠ 1)
1716necomd 2998 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ0 → 1 ≠ (2 · 𝑥))
1817neneqd 2947 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ0 → ¬ 1 = (2 · 𝑥))
1918nrex 3196 . . . . . . . . . . . 12 ¬ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)
20 1ex 10902 . . . . . . . . . . . . 13 1 ∈ V
21 eqeq1 2742 . . . . . . . . . . . . . 14 (𝑦 = 1 → (𝑦 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
2221rexbidv 3225 . . . . . . . . . . . . 13 (𝑦 = 1 → (∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥)))
2320, 22elab 3602 . . . . . . . . . . . 12 (1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ↔ ∃𝑥 ∈ ℕ0 1 = (2 · 𝑥))
2419, 23mtbir 322 . . . . . . . . . . 11 ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
25 nelss 3980 . . . . . . . . . . 11 ((1 ∈ ℕ0 ∧ ¬ 1 ∈ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}) → ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
266, 24, 25mp2an 688 . . . . . . . . . 10 ¬ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
2726intnan 486 . . . . . . . . 9 ¬ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)})
28 eqss 3932 . . . . . . . . 9 ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0 ↔ ({𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} ⊆ ℕ0 ∧ ℕ0 ⊆ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}))
2927, 28mtbir 322 . . . . . . . 8 ¬ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0
30 smndex2dbas.d . . . . . . . . . 10 𝐷 = (𝑥 ∈ ℕ0 ↦ (2 · 𝑥))
3130rnmpt 5853 . . . . . . . . 9 ran 𝐷 = {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)}
3231eqeq1i 2743 . . . . . . . 8 (ran 𝐷 = ℕ0 ↔ {𝑦 ∣ ∃𝑥 ∈ ℕ0 𝑦 = (2 · 𝑥)} = ℕ0)
3329, 32mtbir 322 . . . . . . 7 ¬ ran 𝐷 = ℕ0
3433olci 862 . . . . . 6 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0)
35 ianor 978 . . . . . . 7 (¬ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0) ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
36 df-fo 6424 . . . . . . 7 (𝐷:ℕ0onto→ℕ0 ↔ (𝐷 Fn ℕ0 ∧ ran 𝐷 = ℕ0))
3735, 36xchnxbir 332 . . . . . 6 𝐷:ℕ0onto→ℕ0 ↔ (¬ 𝐷 Fn ℕ0 ∨ ¬ ran 𝐷 = ℕ0))
3834, 37mpbir 230 . . . . 5 ¬ 𝐷:ℕ0onto→ℕ0
3938a1i 11 . . . 4 (𝑓:ℕ0⟶ℕ0 → ¬ 𝐷:ℕ0onto→ℕ0)
40 smndex2dbas.0 . . . . . 6 0 = (0g𝑀)
413, 4, 40, 30smndex2dbas 18468 . . . . 5 𝐷𝐵
423, 4efmndbasf 18429 . . . . 5 (𝐷𝐵𝐷:ℕ0⟶ℕ0)
43 simpl 482 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0⟶ℕ0)
44 simpl 482 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝑓:ℕ0⟶ℕ0)
4544adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝑓:ℕ0⟶ℕ0)
46 nn0ex 12169 . . . . . . . . . . . . 13 0 ∈ V
473efmndid 18442 . . . . . . . . . . . . 13 (ℕ0 ∈ V → ( I ↾ ℕ0) = (0g𝑀))
4846, 47ax-mp 5 . . . . . . . . . . . 12 ( I ↾ ℕ0) = (0g𝑀)
4940, 48eqtr4i 2769 . . . . . . . . . . 11 0 = ( I ↾ ℕ0)
5049eqeq2i 2751 . . . . . . . . . 10 ((𝐷𝑓) = 0 ↔ (𝐷𝑓) = ( I ↾ ℕ0))
5150biimpi 215 . . . . . . . . 9 ((𝐷𝑓) = 0 → (𝐷𝑓) = ( I ↾ ℕ0))
5251adantl 481 . . . . . . . 8 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → (𝐷𝑓) = ( I ↾ ℕ0))
5352adantl 481 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → (𝐷𝑓) = ( I ↾ ℕ0))
54 fcofo 7140 . . . . . . 7 ((𝐷:ℕ0⟶ℕ0𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = ( I ↾ ℕ0)) → 𝐷:ℕ0onto→ℕ0)
5543, 45, 53, 54syl3anc 1369 . . . . . 6 ((𝐷:ℕ0⟶ℕ0 ∧ (𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 )) → 𝐷:ℕ0onto→ℕ0)
5655ex 412 . . . . 5 (𝐷:ℕ0⟶ℕ0 → ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0))
5741, 42, 56mp2b 10 . . . 4 ((𝑓:ℕ0⟶ℕ0 ∧ (𝐷𝑓) = 0 ) → 𝐷:ℕ0onto→ℕ0)
5839, 57mtand 812 . . 3 (𝑓:ℕ0⟶ℕ0 → ¬ (𝐷𝑓) = 0 )
595, 58syl 17 . 2 (𝑓𝐵 → ¬ (𝐷𝑓) = 0 )
602, 59mprgbir 3078 1 𝑓𝐵 (𝐷𝑓) ≠ 0
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  wss 3883  cmpt 5153   I cid 5479  ran crn 5581  cres 5582  ccom 5584   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  2c2 11958  0cn0 12163  cz 12249  Basecbs 16840  0gc0g 17067  EndoFMndcefmnd 18422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-tset 16907  df-0g 17069  df-efmnd 18423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator