MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmssuvc2 Structured version   Visualization version   GIF version

Theorem frlmssuvc2 21838
Description: A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmssuvc1.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmssuvc1.u 𝑈 = (𝑅 unitVec 𝐼)
frlmssuvc1.b 𝐵 = (Base‘𝐹)
frlmssuvc1.k 𝐾 = (Base‘𝑅)
frlmssuvc1.t · = ( ·𝑠𝐹)
frlmssuvc1.z 0 = (0g𝑅)
frlmssuvc1.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
frlmssuvc1.r (𝜑𝑅 ∈ Ring)
frlmssuvc1.i (𝜑𝐼𝑉)
frlmssuvc1.j (𝜑𝐽𝐼)
frlmssuvc2.l (𝜑𝐿 ∈ (𝐼𝐽))
frlmssuvc2.x (𝜑𝑋 ∈ (𝐾 ∖ { 0 }))
Assertion
Ref Expression
frlmssuvc2 (𝜑 → ¬ (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅   𝑥, 0   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmssuvc2
StepHypRef Expression
1 fveq2 6920 . . . . . . 7 (𝑥 = 𝐿 → ((𝑋 · (𝑈𝐿))‘𝑥) = ((𝑋 · (𝑈𝐿))‘𝐿))
21neeq1d 3006 . . . . . 6 (𝑥 = 𝐿 → (((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 ↔ ((𝑋 · (𝑈𝐿))‘𝐿) ≠ 0 ))
3 frlmssuvc2.l . . . . . . 7 (𝜑𝐿 ∈ (𝐼𝐽))
43eldifad 3988 . . . . . 6 (𝜑𝐿𝐼)
5 frlmssuvc1.f . . . . . . . . 9 𝐹 = (𝑅 freeLMod 𝐼)
6 frlmssuvc1.b . . . . . . . . 9 𝐵 = (Base‘𝐹)
7 frlmssuvc1.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
8 frlmssuvc1.i . . . . . . . . 9 (𝜑𝐼𝑉)
9 frlmssuvc2.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐾 ∖ { 0 }))
109eldifad 3988 . . . . . . . . 9 (𝜑𝑋𝐾)
11 frlmssuvc1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
12 frlmssuvc1.u . . . . . . . . . . . 12 𝑈 = (𝑅 unitVec 𝐼)
1312, 5, 6uvcff 21834 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
1411, 8, 13syl2anc 583 . . . . . . . . . 10 (𝜑𝑈:𝐼𝐵)
1514, 4ffvelcdmd 7119 . . . . . . . . 9 (𝜑 → (𝑈𝐿) ∈ 𝐵)
16 frlmssuvc1.t . . . . . . . . 9 · = ( ·𝑠𝐹)
17 eqid 2740 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
185, 6, 7, 8, 10, 15, 4, 16, 17frlmvscaval 21811 . . . . . . . 8 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) = (𝑋(.r𝑅)((𝑈𝐿)‘𝐿)))
19 eqid 2740 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2012, 11, 8, 4, 19uvcvv1 21832 . . . . . . . . 9 (𝜑 → ((𝑈𝐿)‘𝐿) = (1r𝑅))
2120oveq2d 7464 . . . . . . . 8 (𝜑 → (𝑋(.r𝑅)((𝑈𝐿)‘𝐿)) = (𝑋(.r𝑅)(1r𝑅)))
227, 17, 19ringridm 20293 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑋(.r𝑅)(1r𝑅)) = 𝑋)
2311, 10, 22syl2anc 583 . . . . . . . 8 (𝜑 → (𝑋(.r𝑅)(1r𝑅)) = 𝑋)
2418, 21, 233eqtrd 2784 . . . . . . 7 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) = 𝑋)
25 eldifsni 4815 . . . . . . . 8 (𝑋 ∈ (𝐾 ∖ { 0 }) → 𝑋0 )
269, 25syl 17 . . . . . . 7 (𝜑𝑋0 )
2724, 26eqnetrd 3014 . . . . . 6 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) ≠ 0 )
282, 4, 27elrabd 3710 . . . . 5 (𝜑𝐿 ∈ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
293eldifbd 3989 . . . . 5 (𝜑 → ¬ 𝐿𝐽)
30 nelss 4074 . . . . 5 ((𝐿 ∈ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ∧ ¬ 𝐿𝐽) → ¬ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽)
3128, 29, 30syl2anc 583 . . . 4 (𝜑 → ¬ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽)
325frlmlmod 21792 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐹 ∈ LMod)
3311, 8, 32syl2anc 583 . . . . . . . . 9 (𝜑𝐹 ∈ LMod)
345frlmsca 21796 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3511, 8, 34syl2anc 583 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝐹))
3635fveq2d 6924 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
377, 36eqtrid 2792 . . . . . . . . . 10 (𝜑𝐾 = (Base‘(Scalar‘𝐹)))
3810, 37eleqtrd 2846 . . . . . . . . 9 (𝜑𝑋 ∈ (Base‘(Scalar‘𝐹)))
39 eqid 2740 . . . . . . . . . 10 (Scalar‘𝐹) = (Scalar‘𝐹)
40 eqid 2740 . . . . . . . . . 10 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
416, 39, 16, 40lmodvscl 20898 . . . . . . . . 9 ((𝐹 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐹)) ∧ (𝑈𝐿) ∈ 𝐵) → (𝑋 · (𝑈𝐿)) ∈ 𝐵)
4233, 38, 15, 41syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐵)
435, 7, 6frlmbasf 21803 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑋 · (𝑈𝐿)) ∈ 𝐵) → (𝑋 · (𝑈𝐿)):𝐼𝐾)
448, 42, 43syl2anc 583 . . . . . . 7 (𝜑 → (𝑋 · (𝑈𝐿)):𝐼𝐾)
4544ffnd 6748 . . . . . 6 (𝜑 → (𝑋 · (𝑈𝐿)) Fn 𝐼)
46 frlmssuvc1.z . . . . . . . 8 0 = (0g𝑅)
4746fvexi 6934 . . . . . . 7 0 ∈ V
4847a1i 11 . . . . . 6 (𝜑0 ∈ V)
49 suppvalfn 8209 . . . . . 6 (((𝑋 · (𝑈𝐿)) Fn 𝐼𝐼𝑉0 ∈ V) → ((𝑋 · (𝑈𝐿)) supp 0 ) = {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
5045, 8, 48, 49syl3anc 1371 . . . . 5 (𝜑 → ((𝑋 · (𝑈𝐿)) supp 0 ) = {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
5150sseq1d 4040 . . . 4 (𝜑 → (((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽 ↔ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽))
5231, 51mtbird 325 . . 3 (𝜑 → ¬ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽)
5352intnand 488 . 2 (𝜑 → ¬ ((𝑋 · (𝑈𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
54 oveq1 7455 . . . 4 (𝑥 = (𝑋 · (𝑈𝐿)) → (𝑥 supp 0 ) = ((𝑋 · (𝑈𝐿)) supp 0 ))
5554sseq1d 4040 . . 3 (𝑥 = (𝑋 · (𝑈𝐿)) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
56 frlmssuvc1.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
5755, 56elrab2 3711 . 2 ((𝑋 · (𝑈𝐿)) ∈ 𝐶 ↔ ((𝑋 · (𝑈𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
5853, 57sylnibr 329 1 (𝜑 → ¬ (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  {csn 4648   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448   supp csupp 8201  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  1rcur 20208  Ringcrg 20260  LModclmod 20880   freeLMod cfrlm 21789   unitVec cuvc 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-prds 17507  df-pws 17509  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826
This theorem is referenced by:  frlmlbs  21840
  Copyright terms: Public domain W3C validator