Proof of Theorem frlmssuvc2
| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 𝐿 → ((𝑋 · (𝑈‘𝐿))‘𝑥) = ((𝑋 · (𝑈‘𝐿))‘𝐿)) |
| 2 | 1 | neeq1d 3000 |
. . . . . 6
⊢ (𝑥 = 𝐿 → (((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 ↔ ((𝑋 · (𝑈‘𝐿))‘𝐿) ≠ 0 )) |
| 3 | | frlmssuvc2.l |
. . . . . . 7
⊢ (𝜑 → 𝐿 ∈ (𝐼 ∖ 𝐽)) |
| 4 | 3 | eldifad 3963 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ 𝐼) |
| 5 | | frlmssuvc1.f |
. . . . . . . . 9
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| 6 | | frlmssuvc1.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐹) |
| 7 | | frlmssuvc1.k |
. . . . . . . . 9
⊢ 𝐾 = (Base‘𝑅) |
| 8 | | frlmssuvc1.i |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 9 | | frlmssuvc2.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐾 ∖ { 0 })) |
| 10 | 9 | eldifad 3963 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| 11 | | frlmssuvc1.r |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 12 | | frlmssuvc1.u |
. . . . . . . . . . . 12
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| 13 | 12, 5, 6 | uvcff 21811 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼⟶𝐵) |
| 14 | 11, 8, 13 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈:𝐼⟶𝐵) |
| 15 | 14, 4 | ffvelcdmd 7105 |
. . . . . . . . 9
⊢ (𝜑 → (𝑈‘𝐿) ∈ 𝐵) |
| 16 | | frlmssuvc1.t |
. . . . . . . . 9
⊢ · = (
·𝑠 ‘𝐹) |
| 17 | | eqid 2737 |
. . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 18 | 5, 6, 7, 8, 10, 15, 4, 16, 17 | frlmvscaval 21788 |
. . . . . . . 8
⊢ (𝜑 → ((𝑋 · (𝑈‘𝐿))‘𝐿) = (𝑋(.r‘𝑅)((𝑈‘𝐿)‘𝐿))) |
| 19 | | eqid 2737 |
. . . . . . . . . 10
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 20 | 12, 11, 8, 4, 19 | uvcvv1 21809 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑈‘𝐿)‘𝐿) = (1r‘𝑅)) |
| 21 | 20 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝜑 → (𝑋(.r‘𝑅)((𝑈‘𝐿)‘𝐿)) = (𝑋(.r‘𝑅)(1r‘𝑅))) |
| 22 | 7, 17, 19 | ringridm 20267 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
| 23 | 11, 10, 22 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝑋(.r‘𝑅)(1r‘𝑅)) = 𝑋) |
| 24 | 18, 21, 23 | 3eqtrd 2781 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 · (𝑈‘𝐿))‘𝐿) = 𝑋) |
| 25 | | eldifsni 4790 |
. . . . . . . 8
⊢ (𝑋 ∈ (𝐾 ∖ { 0 }) → 𝑋 ≠ 0 ) |
| 26 | 9, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 27 | 24, 26 | eqnetrd 3008 |
. . . . . 6
⊢ (𝜑 → ((𝑋 · (𝑈‘𝐿))‘𝐿) ≠ 0 ) |
| 28 | 2, 4, 27 | elrabd 3694 |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 }) |
| 29 | 3 | eldifbd 3964 |
. . . . 5
⊢ (𝜑 → ¬ 𝐿 ∈ 𝐽) |
| 30 | | nelss 4049 |
. . . . 5
⊢ ((𝐿 ∈ {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 } ∧ ¬ 𝐿 ∈ 𝐽) → ¬ {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽) |
| 31 | 28, 29, 30 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ¬ {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽) |
| 32 | 5 | frlmlmod 21769 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ LMod) |
| 33 | 11, 8, 32 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ LMod) |
| 34 | 5 | frlmsca 21773 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 = (Scalar‘𝐹)) |
| 35 | 11, 8, 34 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑅 = (Scalar‘𝐹)) |
| 36 | 35 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(Scalar‘𝐹))) |
| 37 | 7, 36 | eqtrid 2789 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 = (Base‘(Scalar‘𝐹))) |
| 38 | 10, 37 | eleqtrd 2843 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝐹))) |
| 39 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Scalar‘𝐹) =
(Scalar‘𝐹) |
| 40 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) |
| 41 | 6, 39, 16, 40 | lmodvscl 20876 |
. . . . . . . . 9
⊢ ((𝐹 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝐹)) ∧ (𝑈‘𝐿) ∈ 𝐵) → (𝑋 · (𝑈‘𝐿)) ∈ 𝐵) |
| 42 | 33, 38, 15, 41 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) ∈ 𝐵) |
| 43 | 5, 7, 6 | frlmbasf 21780 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ (𝑋 · (𝑈‘𝐿)) ∈ 𝐵) → (𝑋 · (𝑈‘𝐿)):𝐼⟶𝐾) |
| 44 | 8, 42, 43 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)):𝐼⟶𝐾) |
| 45 | 44 | ffnd 6737 |
. . . . . 6
⊢ (𝜑 → (𝑋 · (𝑈‘𝐿)) Fn 𝐼) |
| 46 | | frlmssuvc1.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝑅) |
| 47 | 46 | fvexi 6920 |
. . . . . . 7
⊢ 0 ∈
V |
| 48 | 47 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈ V) |
| 49 | | suppvalfn 8193 |
. . . . . 6
⊢ (((𝑋 · (𝑈‘𝐿)) Fn 𝐼 ∧ 𝐼 ∈ 𝑉 ∧ 0 ∈ V) → ((𝑋 · (𝑈‘𝐿)) supp 0 ) = {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 }) |
| 50 | 45, 8, 48, 49 | syl3anc 1373 |
. . . . 5
⊢ (𝜑 → ((𝑋 · (𝑈‘𝐿)) supp 0 ) = {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 }) |
| 51 | 50 | sseq1d 4015 |
. . . 4
⊢ (𝜑 → (((𝑋 · (𝑈‘𝐿)) supp 0 ) ⊆ 𝐽 ↔ {𝑥 ∈ 𝐼 ∣ ((𝑋 · (𝑈‘𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽)) |
| 52 | 31, 51 | mtbird 325 |
. . 3
⊢ (𝜑 → ¬ ((𝑋 · (𝑈‘𝐿)) supp 0 ) ⊆ 𝐽) |
| 53 | 52 | intnand 488 |
. 2
⊢ (𝜑 → ¬ ((𝑋 · (𝑈‘𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈‘𝐿)) supp 0 ) ⊆ 𝐽)) |
| 54 | | oveq1 7438 |
. . . 4
⊢ (𝑥 = (𝑋 · (𝑈‘𝐿)) → (𝑥 supp 0 ) = ((𝑋 · (𝑈‘𝐿)) supp 0 )) |
| 55 | 54 | sseq1d 4015 |
. . 3
⊢ (𝑥 = (𝑋 · (𝑈‘𝐿)) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑋 · (𝑈‘𝐿)) supp 0 ) ⊆ 𝐽)) |
| 56 | | frlmssuvc1.c |
. . 3
⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽} |
| 57 | 55, 56 | elrab2 3695 |
. 2
⊢ ((𝑋 · (𝑈‘𝐿)) ∈ 𝐶 ↔ ((𝑋 · (𝑈‘𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈‘𝐿)) supp 0 ) ⊆ 𝐽)) |
| 58 | 53, 57 | sylnibr 329 |
1
⊢ (𝜑 → ¬ (𝑋 · (𝑈‘𝐿)) ∈ 𝐶) |