MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmssuvc2 Structured version   Visualization version   GIF version

Theorem frlmssuvc2 21755
Description: A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.) (Revised by AV, 24-Jun-2019.)
Hypotheses
Ref Expression
frlmssuvc1.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmssuvc1.u 𝑈 = (𝑅 unitVec 𝐼)
frlmssuvc1.b 𝐵 = (Base‘𝐹)
frlmssuvc1.k 𝐾 = (Base‘𝑅)
frlmssuvc1.t · = ( ·𝑠𝐹)
frlmssuvc1.z 0 = (0g𝑅)
frlmssuvc1.c 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
frlmssuvc1.r (𝜑𝑅 ∈ Ring)
frlmssuvc1.i (𝜑𝐼𝑉)
frlmssuvc1.j (𝜑𝐽𝐼)
frlmssuvc2.l (𝜑𝐿 ∈ (𝐼𝐽))
frlmssuvc2.x (𝜑𝑋 ∈ (𝐾 ∖ { 0 }))
Assertion
Ref Expression
frlmssuvc2 (𝜑 → ¬ (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐼   𝑥,𝐽   𝑥,𝐾   𝑥,𝐿   𝑥,𝑅   𝑥, 0   𝜑,𝑥   𝑥,𝑈   𝑥,𝑉   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem frlmssuvc2
StepHypRef Expression
1 fveq2 6876 . . . . . . 7 (𝑥 = 𝐿 → ((𝑋 · (𝑈𝐿))‘𝑥) = ((𝑋 · (𝑈𝐿))‘𝐿))
21neeq1d 2991 . . . . . 6 (𝑥 = 𝐿 → (((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 ↔ ((𝑋 · (𝑈𝐿))‘𝐿) ≠ 0 ))
3 frlmssuvc2.l . . . . . . 7 (𝜑𝐿 ∈ (𝐼𝐽))
43eldifad 3938 . . . . . 6 (𝜑𝐿𝐼)
5 frlmssuvc1.f . . . . . . . . 9 𝐹 = (𝑅 freeLMod 𝐼)
6 frlmssuvc1.b . . . . . . . . 9 𝐵 = (Base‘𝐹)
7 frlmssuvc1.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
8 frlmssuvc1.i . . . . . . . . 9 (𝜑𝐼𝑉)
9 frlmssuvc2.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐾 ∖ { 0 }))
109eldifad 3938 . . . . . . . . 9 (𝜑𝑋𝐾)
11 frlmssuvc1.r . . . . . . . . . . 11 (𝜑𝑅 ∈ Ring)
12 frlmssuvc1.u . . . . . . . . . . . 12 𝑈 = (𝑅 unitVec 𝐼)
1312, 5, 6uvcff 21751 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼𝐵)
1411, 8, 13syl2anc 584 . . . . . . . . . 10 (𝜑𝑈:𝐼𝐵)
1514, 4ffvelcdmd 7075 . . . . . . . . 9 (𝜑 → (𝑈𝐿) ∈ 𝐵)
16 frlmssuvc1.t . . . . . . . . 9 · = ( ·𝑠𝐹)
17 eqid 2735 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
185, 6, 7, 8, 10, 15, 4, 16, 17frlmvscaval 21728 . . . . . . . 8 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) = (𝑋(.r𝑅)((𝑈𝐿)‘𝐿)))
19 eqid 2735 . . . . . . . . . 10 (1r𝑅) = (1r𝑅)
2012, 11, 8, 4, 19uvcvv1 21749 . . . . . . . . 9 (𝜑 → ((𝑈𝐿)‘𝐿) = (1r𝑅))
2120oveq2d 7421 . . . . . . . 8 (𝜑 → (𝑋(.r𝑅)((𝑈𝐿)‘𝐿)) = (𝑋(.r𝑅)(1r𝑅)))
227, 17, 19ringridm 20230 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑋𝐾) → (𝑋(.r𝑅)(1r𝑅)) = 𝑋)
2311, 10, 22syl2anc 584 . . . . . . . 8 (𝜑 → (𝑋(.r𝑅)(1r𝑅)) = 𝑋)
2418, 21, 233eqtrd 2774 . . . . . . 7 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) = 𝑋)
25 eldifsni 4766 . . . . . . . 8 (𝑋 ∈ (𝐾 ∖ { 0 }) → 𝑋0 )
269, 25syl 17 . . . . . . 7 (𝜑𝑋0 )
2724, 26eqnetrd 2999 . . . . . 6 (𝜑 → ((𝑋 · (𝑈𝐿))‘𝐿) ≠ 0 )
282, 4, 27elrabd 3673 . . . . 5 (𝜑𝐿 ∈ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
293eldifbd 3939 . . . . 5 (𝜑 → ¬ 𝐿𝐽)
30 nelss 4024 . . . . 5 ((𝐿 ∈ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ∧ ¬ 𝐿𝐽) → ¬ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽)
3128, 29, 30syl2anc 584 . . . 4 (𝜑 → ¬ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽)
325frlmlmod 21709 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝐹 ∈ LMod)
3311, 8, 32syl2anc 584 . . . . . . . . 9 (𝜑𝐹 ∈ LMod)
345frlmsca 21713 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3511, 8, 34syl2anc 584 . . . . . . . . . . . 12 (𝜑𝑅 = (Scalar‘𝐹))
3635fveq2d 6880 . . . . . . . . . . 11 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
377, 36eqtrid 2782 . . . . . . . . . 10 (𝜑𝐾 = (Base‘(Scalar‘𝐹)))
3810, 37eleqtrd 2836 . . . . . . . . 9 (𝜑𝑋 ∈ (Base‘(Scalar‘𝐹)))
39 eqid 2735 . . . . . . . . . 10 (Scalar‘𝐹) = (Scalar‘𝐹)
40 eqid 2735 . . . . . . . . . 10 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
416, 39, 16, 40lmodvscl 20835 . . . . . . . . 9 ((𝐹 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝐹)) ∧ (𝑈𝐿) ∈ 𝐵) → (𝑋 · (𝑈𝐿)) ∈ 𝐵)
4233, 38, 15, 41syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑋 · (𝑈𝐿)) ∈ 𝐵)
435, 7, 6frlmbasf 21720 . . . . . . . 8 ((𝐼𝑉 ∧ (𝑋 · (𝑈𝐿)) ∈ 𝐵) → (𝑋 · (𝑈𝐿)):𝐼𝐾)
448, 42, 43syl2anc 584 . . . . . . 7 (𝜑 → (𝑋 · (𝑈𝐿)):𝐼𝐾)
4544ffnd 6707 . . . . . 6 (𝜑 → (𝑋 · (𝑈𝐿)) Fn 𝐼)
46 frlmssuvc1.z . . . . . . . 8 0 = (0g𝑅)
4746fvexi 6890 . . . . . . 7 0 ∈ V
4847a1i 11 . . . . . 6 (𝜑0 ∈ V)
49 suppvalfn 8167 . . . . . 6 (((𝑋 · (𝑈𝐿)) Fn 𝐼𝐼𝑉0 ∈ V) → ((𝑋 · (𝑈𝐿)) supp 0 ) = {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
5045, 8, 48, 49syl3anc 1373 . . . . 5 (𝜑 → ((𝑋 · (𝑈𝐿)) supp 0 ) = {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 })
5150sseq1d 3990 . . . 4 (𝜑 → (((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽 ↔ {𝑥𝐼 ∣ ((𝑋 · (𝑈𝐿))‘𝑥) ≠ 0 } ⊆ 𝐽))
5231, 51mtbird 325 . . 3 (𝜑 → ¬ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽)
5352intnand 488 . 2 (𝜑 → ¬ ((𝑋 · (𝑈𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
54 oveq1 7412 . . . 4 (𝑥 = (𝑋 · (𝑈𝐿)) → (𝑥 supp 0 ) = ((𝑋 · (𝑈𝐿)) supp 0 ))
5554sseq1d 3990 . . 3 (𝑥 = (𝑋 · (𝑈𝐿)) → ((𝑥 supp 0 ) ⊆ 𝐽 ↔ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
56 frlmssuvc1.c . . 3 𝐶 = {𝑥𝐵 ∣ (𝑥 supp 0 ) ⊆ 𝐽}
5755, 56elrab2 3674 . 2 ((𝑋 · (𝑈𝐿)) ∈ 𝐶 ↔ ((𝑋 · (𝑈𝐿)) ∈ 𝐵 ∧ ((𝑋 · (𝑈𝐿)) supp 0 ) ⊆ 𝐽))
5853, 57sylnibr 329 1 (𝜑 → ¬ (𝑋 · (𝑈𝐿)) ∈ 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  {csn 4601   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405   supp csupp 8159  Basecbs 17228  .rcmulr 17272  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  1rcur 20141  Ringcrg 20193  LModclmod 20817   freeLMod cfrlm 21706   unitVec cuvc 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-uvc 21743
This theorem is referenced by:  frlmlbs  21757
  Copyright terms: Public domain W3C validator