MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbrd Structured version   Visualization version   GIF version

Theorem nfbrd 5194
Description: Deduction version of bound-variable hypothesis builder nfbr 5195. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbrd.2 (𝜑𝑥𝐴)
nfbrd.3 (𝜑𝑥𝑅)
nfbrd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfbrd (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)

Proof of Theorem nfbrd
StepHypRef Expression
1 df-br 5149 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 nfbrd.2 . . . 4 (𝜑𝑥𝐴)
3 nfbrd.4 . . . 4 (𝜑𝑥𝐵)
42, 3nfopd 4895 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
5 nfbrd.3 . . 3 (𝜑𝑥𝑅)
64, 5nfeld 2915 . 2 (𝜑 → Ⅎ𝑥𝐴, 𝐵⟩ ∈ 𝑅)
71, 6nfxfrd 1851 1 (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1780  wcel 2106  wnfc 2888  cop 4637   class class class wbr 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149
This theorem is referenced by:  nfbr  5195  nfttrcld  9748
  Copyright terms: Public domain W3C validator