![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfbrd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfbr 5192. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfbrd.3 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
nfbrd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfbrd | ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5146 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | nfbrd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfbrd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfopd 4888 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
5 | nfbrd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
6 | 4, 5 | nfeld 2904 | . 2 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉 ∈ 𝑅) |
7 | 1, 6 | nfxfrd 1849 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1778 ∈ wcel 2099 Ⅎwnfc 2876 〈cop 4629 class class class wbr 5145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5146 |
This theorem is referenced by: nfbr 5192 nfttrcld 9746 |
Copyright terms: Public domain | W3C validator |