Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfbrd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfbr 5125. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfbrd.3 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
nfbrd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfbrd | ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5079 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | nfbrd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfbrd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfopd 4826 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
5 | nfbrd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
6 | 4, 5 | nfeld 2919 | . 2 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉 ∈ 𝑅) |
7 | 1, 6 | nfxfrd 1859 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1789 ∈ wcel 2109 Ⅎwnfc 2888 〈cop 4572 class class class wbr 5078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 |
This theorem is referenced by: nfbr 5125 nfttrcld 9429 |
Copyright terms: Public domain | W3C validator |