Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfbrd | Structured version Visualization version GIF version |
Description: Deduction version of bound-variable hypothesis builder nfbr 5078. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
nfbrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfbrd.3 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
nfbrd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
Ref | Expression |
---|---|
nfbrd | ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 5032 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
2 | nfbrd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
3 | nfbrd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
4 | 2, 3 | nfopd 4779 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
5 | nfbrd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
6 | 4, 5 | nfeld 2911 | . 2 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉 ∈ 𝑅) |
7 | 1, 6 | nfxfrd 1860 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1790 ∈ wcel 2114 Ⅎwnfc 2880 〈cop 4523 class class class wbr 5031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-v 3401 df-dif 3847 df-un 3849 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-br 5032 |
This theorem is referenced by: nfbr 5078 |
Copyright terms: Public domain | W3C validator |