Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemre Structured version   Visualization version   GIF version

Theorem sge0iunmptlemre 46413
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemre.a (𝜑𝐴𝑉)
sge0iunmptlemre.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmptlemre.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemre.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemre.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
sge0iunmptlemre.sxr (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
sge0iunmptlemre.ssxr (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
sge0iunmptlemre.f (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
sge0iunmptlemre.iue (𝜑 𝑥𝐴 𝐵 ∈ V)
Assertion
Ref Expression
sge0iunmptlemre (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmptlemre
Dummy variables 𝑏 𝑝 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0iunmptlemre.sxr . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
2 sge0iunmptlemre.ssxr . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
3 elpwinss 45043 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 𝑥𝐴 𝐵)
43resmptd 6011 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → ((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦) = (𝑘𝑦𝐶))
54fveq2d 6862 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
65adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
7 elinel2 4165 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
87adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝑦 ∈ Fin)
93sselda 3946 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → 𝑘 𝑥𝐴 𝐵)
10 eliun 4959 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
119, 10sylib 218 . . . . . . . . . 10 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
1211adantll 714 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
13 nfv 1914 . . . . . . . . . . . 12 𝑥𝜑
14 nfcv 2891 . . . . . . . . . . . . 13 𝑥𝑦
15 nfiu1 4991 . . . . . . . . . . . . . . 15 𝑥 𝑥𝐴 𝐵
1615nfpw 4582 . . . . . . . . . . . . . 14 𝑥𝒫 𝑥𝐴 𝐵
17 nfcv 2891 . . . . . . . . . . . . . 14 𝑥Fin
1816, 17nfin 4187 . . . . . . . . . . . . 13 𝑥(𝒫 𝑥𝐴 𝐵 ∩ Fin)
1914, 18nfel 2906 . . . . . . . . . . . 12 𝑥 𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)
2013, 19nfan 1899 . . . . . . . . . . 11 𝑥(𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
21 nfv 1914 . . . . . . . . . . 11 𝑥 𝑘𝑦
2220, 21nfan 1899 . . . . . . . . . 10 𝑥((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦)
23 nfv 1914 . . . . . . . . . 10 𝑥 𝐶 ∈ (0[,)+∞)
24 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝑘𝐵)
25 sge0iunmptlemre.c . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
26 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
2726fvmpt2 6979 . . . . . . . . . . . . . . 15 ((𝑘𝐵𝐶 ∈ (0[,]+∞)) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2824, 25, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2928eqcomd 2735 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 = ((𝑘𝐵𝐶)‘𝑘))
30253expa 1118 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
3130, 26fmptd 7086 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
32313adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
33 sge0iunmptlemre.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑊)
34333adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → 𝐵𝑊)
35 sge0iunmptlemre.re . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
36353adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
3734, 32, 36sge0rern 46386 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → ¬ +∞ ∈ ran (𝑘𝐵𝐶))
3832, 37fge0iccico 46368 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,)+∞))
3938, 24ffvelcdmd 7057 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) ∈ (0[,)+∞))
4029, 39eqeltrd 2828 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞))
41403exp 1119 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4241ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4322, 23, 42rexlimd 3244 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,)+∞)))
4412, 43mpd 15 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → 𝐶 ∈ (0[,)+∞))
458, 44sge0fsummpt 46388 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑦𝐶)) = Σ𝑘𝑦 𝐶)
46 sseqin2 4186 . . . . . . . . . . . . . 14 (𝑦 𝑥𝐴 𝐵 ↔ ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4746biimpi 216 . . . . . . . . . . . . 13 (𝑦 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4847eqcomd 2735 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵𝑦 = ( 𝑥𝐴 𝐵𝑦))
49 iunin1 5036 . . . . . . . . . . . . 13 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦)
5049a1i 11 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦))
5148, 50eqtr4d 2767 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵𝑦 = 𝑥𝐴 (𝐵𝑦))
523, 51syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 = 𝑥𝐴 (𝐵𝑦))
5352sumeq1d 15666 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
5453adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
55 simpl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝜑)
5633adantlr 715 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴) → 𝐵𝑊)
57 sge0iunmptlemre.dj . . . . . . . . . . 11 (𝜑Disj 𝑥𝐴 𝐵)
5857adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → Disj 𝑥𝐴 𝐵)
59 rge0ssre 13417 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
60 ax-resscn 11125 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
6159, 60sstri 3956 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
6261, 40sselid 3944 . . . . . . . . . . 11 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
63623adant1r 1178 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
64 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → 𝑦 ∈ Fin)
6556, 58, 63, 64fsumiunss 45573 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6655, 8, 65syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6754, 66eqtrd 2764 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
686, 45, 673eqtrd 2768 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6956, 58, 64disjinfi 45186 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ Fin)
70 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → 𝑦 ∈ Fin)
71 inss2 4201 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦
7271a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦)
73 ssfi 9137 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7470, 72, 73syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7574ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
76 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
77 elrabi 3654 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑤𝐴)
7877ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
79 elinel1 4164 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) → 𝑘𝑤 / 𝑥𝐵)
8079adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
81 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥 𝑤𝐴
82 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑥𝑘
83 nfcsb1v 3886 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
8482, 83nfel 2906 . . . . . . . . . . . . . . . 16 𝑥 𝑘𝑤 / 𝑥𝐵
8513, 81, 84nf3an 1901 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)
8685, 23nfim 1896 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
87 eleq1w 2811 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
88 csbeq1a 3876 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
8988eleq2d 2814 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑘𝐵𝑘𝑤 / 𝑥𝐵))
9087, 893anbi23d 1441 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)))
9190imbi1d 341 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))))
9286, 91, 40chvarfv 2241 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
9376, 78, 80, 92syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9493adantllr 719 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9575, 94fsumge0cl 45571 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶 ∈ (0[,)+∞))
9669, 95sge0fsummpt 46388 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
97 inss2 4201 . . . . . . . . . . . . . . . . 17 (𝐵𝑦) ⊆ 𝑦
9897a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin → (𝐵𝑦) ⊆ 𝑦)
99 ssfi 9137 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ (𝐵𝑦) ⊆ 𝑦) → (𝐵𝑦) ∈ Fin)
10070, 98, 99syl2anc 584 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝐵𝑦) ∈ Fin)
101100ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝐵𝑦) ∈ Fin)
102 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝜑)
103 rabid 3427 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↔ (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
104103biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
105104simpld 494 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑥𝐴)
106105ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑥𝐴)
107 elinel1 4164 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝑦) → 𝑘𝐵)
108107adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑘𝐵)
109102, 106, 108, 40syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
110109adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
111101, 110sge0fsummpt 46388 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = Σ𝑘 ∈ (𝐵𝑦)𝐶)
112111mpteq2dva 5200 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶))
113 nfrab1 3426 . . . . . . . . . . . . . 14 𝑥{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
114 nfcv 2891 . . . . . . . . . . . . . 14 𝑤{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
115 nfcv 2891 . . . . . . . . . . . . . 14 𝑤Σ𝑘 ∈ (𝐵𝑦)𝐶
11683, 14nfin 4187 . . . . . . . . . . . . . . 15 𝑥(𝑤 / 𝑥𝐵𝑦)
117 nfcv 2891 . . . . . . . . . . . . . . 15 𝑥𝐶
118116, 117nfsum 15657 . . . . . . . . . . . . . 14 𝑥Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
11988ineq1d 4182 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐵𝑦) = (𝑤 / 𝑥𝐵𝑦))
120119sumeq1d 15666 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
121113, 114, 115, 118, 120cbvmptf 5207 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
122121a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶))
123112, 122eqtr2d 2765 . . . . . . . . . . 11 ((𝜑𝑦 ∈ Fin) → (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
124123fveq2d 6862 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
125124eqcomd 2735 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)))
126120, 115, 118cbvsum 15661 . . . . . . . . . 10 Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
127126a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
12896, 125, 1273eqtr4d 2774 . . . . . . . 8 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
12955, 8, 128syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
130129eqcomd 2735 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
13168, 130eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
132 sge0iunmptlemre.a . . . . . . . . 9 (𝜑𝐴𝑉)
13377ssriv 3950 . . . . . . . . . 10 {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴
134133a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴)
135132, 134ssexd 5279 . . . . . . . 8 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ V)
136 vex 3451 . . . . . . . . . . . . 13 𝑦 ∈ V
137136inex2 5273 . . . . . . . . . . . 12 (𝑤 / 𝑥𝐵𝑦) ∈ V
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 / 𝑥𝐵𝑦) ∈ V)
139 icossicc 13397 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
140 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
141 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
14279adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
143140, 141, 142, 92syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
144139, 143sselid 3944 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
145 eqid 2729 . . . . . . . . . . . 12 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
146144, 145fmptd 7086 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶):(𝑤 / 𝑥𝐵𝑦)⟶(0[,]+∞))
147138, 146sge0cl 46379 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
14877, 147sylan2 593 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
149 nfcv 2891 . . . . . . . . . 10 𝑤^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))
150 nfcv 2891 . . . . . . . . . . 11 𝑥Σ^
151116, 117nfmpt 5205 . . . . . . . . . . 11 𝑥(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
152150, 151nffv 6868 . . . . . . . . . 10 𝑥^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
153119mpteq1d 5197 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
154153fveq2d 6862 . . . . . . . . . 10 (𝑥 = 𝑤 → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
155113, 114, 149, 152, 154cbvmptf 5207 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
156148, 155fmptd 7086 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))):{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}⟶(0[,]+∞))
157135, 156sge0xrcl 46383 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
158157adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
159 eqid 2729 . . . . . . . . 9 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
160147, 159fmptd 7086 . . . . . . . 8 (𝜑 → (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))):𝐴⟶(0[,]+∞))
161132, 160sge0xrcl 46383 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
162161adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
16355, 2syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
164155fveq2i 6861 . . . . . . . . 9 ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))))
165164a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
166132, 147, 134sge0lessmpt 46397 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
167165, 166eqbrtrd 5129 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
168167adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
169149, 152, 154cbvmpt 5209 . . . . . . . . . . 11 (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
170169eqcomi 2738 . . . . . . . . . 10 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))
171170fveq2i 6861 . . . . . . . . 9 ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
172171a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
173136inex2 5273 . . . . . . . . . . 11 (𝐵𝑦) ∈ V
174173a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ∈ V)
175107, 30sylan2 593 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
176 eqid 2729 . . . . . . . . . . 11 (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝐵𝑦) ↦ 𝐶)
177175, 176fmptd 7086 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶):(𝐵𝑦)⟶(0[,]+∞))
178174, 177sge0cl 46379 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
17933, 31sge0cl 46379 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
180 inss1 4200 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ⊆ 𝐵)
18233, 30, 181sge0lessmpt 46397 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ≤ (Σ^‘(𝑘𝐵𝐶)))
18313, 132, 178, 179, 182sge0lempt 46408 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
184172, 183eqbrtrd 5129 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
185184adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
186158, 162, 163, 168, 185xrletrd 13122 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
187131, 186eqbrtrd 5129 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
188187ralrimiva 3125 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
189 sge0iunmptlemre.iue . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ V)
190 sge0iunmptlemre.f . . . 4 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
191189, 190, 2sge0lefi 46396 . . 3 (𝜑 → ((Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
192188, 191mpbird 257 . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
193 elpwinss 45043 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
194193resmptd 6011 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦) = (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))))
195194fveq2d 6862 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
196195adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
197 elinel2 4165 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
198197adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
199 0xr 11221 . . . . . . . . 9 0 ∈ ℝ*
200199a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
201 pnfxr 11228 . . . . . . . . 9 +∞ ∈ ℝ*
202201a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
203 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
204193sselda 3946 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
205204adantll 714 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
206203, 205, 33syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵𝑊)
207203, 205, 31syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
208206, 207sge0xrcl 46383 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ*)
209206, 207sge0ge0 46382 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
210203, 205, 35syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
211 ltpnf 13080 . . . . . . . . 9 ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ → (Σ^‘(𝑘𝐵𝐶)) < +∞)
212210, 211syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) < +∞)
213200, 202, 208, 209, 212elicod 13356 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
214198, 213sge0fsummpt 46388 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
215196, 214eqtrd 2764 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
216 nfv 1914 . . . . . 6 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
217189adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴 𝐵 ∈ V)
218190fvmptelcdm 7085 . . . . . . 7 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
219218adantlr 715 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
220198, 210fsumrecl 15700 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ)
221220rexrd 11224 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
222 nfv 1914 . . . . . . . 8 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
223 iunss1 4970 . . . . . . . . . . . 12 (𝑦𝐴 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
224193, 223syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
225224adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
226217, 225ssexd 5279 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
227226adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑥𝑦 𝐵 ∈ V)
228 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝜑)
229225sselda 3946 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝑘 𝑥𝐴 𝐵)
230228, 229, 218syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
231230adantlr 715 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
232 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑝 ∈ ℝ+)
233193adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
23457adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝐴 𝐵)
235 disjss1 5080 . . . . . . . . . . . 12 (𝑦𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝑦 𝐵))
236233, 234, 235sylc 65 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝑦 𝐵)
2372033adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝜑)
2382053adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑥𝐴)
239 simp3 1138 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑘𝐵)
240237, 238, 239, 25syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
241198, 206, 236, 240, 210sge0iunmptlemfi 46411 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
242214, 220eqeltrd 2828 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ)
243241, 242eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
244243adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
245222, 227, 231, 232, 244sge0ltfirpmpt 46406 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
246 nfv 1914 . . . . . . . 8 𝑏((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
247 nfre1 3262 . . . . . . . 8 𝑏𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)
248223sspwd 4576 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
249193, 248syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
250249adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
251 elinel1 4164 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
252251adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
253250, 252sseldd 3947 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝐴 𝐵)
254 elinel2 4165 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
255254adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
256253, 255elind 4163 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
257256ad4ant24 754 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
2582573adant3 1132 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
259221ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
2602593adant3 1132 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
261 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin))
262226adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
263230adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
264243adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
265251elpwid 4572 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 𝑥𝑦 𝐵)
266265adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 𝑥𝑦 𝐵)
267261, 262, 263, 264, 266sge0ssrempt 46403 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
268267rexrd 11224 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
269268adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
270 rpxr 12961 . . . . . . . . . . . . . 14 (𝑝 ∈ ℝ+𝑝 ∈ ℝ*)
271270ad2antlr 727 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ*)
272269, 271xaddcld 13261 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
2732723adant3 1132 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
274 simp3 1138 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
275241, 214eqtr2d 2765 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
276275adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
2772763ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
278267adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
279 rpre 12960 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℝ+𝑝 ∈ ℝ)
280279ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ)
281 rexadd 13192 . . . . . . . . . . . . . . 15 (((Σ^‘(𝑘𝑏𝐶)) ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
282278, 280, 281syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
2832823adant3 1132 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
284277, 283breq12d 5120 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ↔ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)))
285274, 284mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
286260, 273, 285xrltled 13110 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
287 rspe 3227 . . . . . . . . . 10 ((𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
288258, 286, 287syl2anc 584 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
2892883exp 1119 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))))
290246, 247, 289rexlimd 3244 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)))
291245, 290mpd 15 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
292216, 217, 219, 221, 291sge0gerpmpt 46400 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
293215, 292eqbrtrd 5129 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
294293ralrimiva 3125 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
295 eqid 2729 . . . . 5 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
296179, 295fmptd 7086 . . . 4 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
297132, 296, 1sge0lefi 46396 . . 3 (𝜑 → ((Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶))))
298294, 297mpbird 257 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
2991, 2, 192, 298xrletrid 13115 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  csb 3862  cin 3913  wss 3914  c0 4296  𝒫 cpw 4563   ciun 4955  Disj wdisj 5074   class class class wbr 5107  cmpt 5188  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  +crp 12951   +𝑒 cxad 13070  [,)cico 13308  [,]cicc 13309  Σcsu 15652  Σ^csumge0 46360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-disj 5075  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-xadd 13073  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-sum 15653  df-sumge0 46361
This theorem is referenced by:  sge0iunmpt  46416
  Copyright terms: Public domain W3C validator