Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemre Structured version   Visualization version   GIF version

Theorem sge0iunmptlemre 45118
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemre.a (𝜑𝐴𝑉)
sge0iunmptlemre.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmptlemre.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemre.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemre.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
sge0iunmptlemre.sxr (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
sge0iunmptlemre.ssxr (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
sge0iunmptlemre.f (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
sge0iunmptlemre.iue (𝜑 𝑥𝐴 𝐵 ∈ V)
Assertion
Ref Expression
sge0iunmptlemre (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmptlemre
Dummy variables 𝑏 𝑝 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0iunmptlemre.sxr . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
2 sge0iunmptlemre.ssxr . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
3 elpwinss 43722 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 𝑥𝐴 𝐵)
43resmptd 6039 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → ((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦) = (𝑘𝑦𝐶))
54fveq2d 6893 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
65adantl 483 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
7 elinel2 4196 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
87adantl 483 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝑦 ∈ Fin)
93sselda 3982 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → 𝑘 𝑥𝐴 𝐵)
10 eliun 5001 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
119, 10sylib 217 . . . . . . . . . 10 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
1211adantll 713 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
13 nfv 1918 . . . . . . . . . . . 12 𝑥𝜑
14 nfcv 2904 . . . . . . . . . . . . 13 𝑥𝑦
15 nfiu1 5031 . . . . . . . . . . . . . . 15 𝑥 𝑥𝐴 𝐵
1615nfpw 4621 . . . . . . . . . . . . . 14 𝑥𝒫 𝑥𝐴 𝐵
17 nfcv 2904 . . . . . . . . . . . . . 14 𝑥Fin
1816, 17nfin 4216 . . . . . . . . . . . . 13 𝑥(𝒫 𝑥𝐴 𝐵 ∩ Fin)
1914, 18nfel 2918 . . . . . . . . . . . 12 𝑥 𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)
2013, 19nfan 1903 . . . . . . . . . . 11 𝑥(𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
21 nfv 1918 . . . . . . . . . . 11 𝑥 𝑘𝑦
2220, 21nfan 1903 . . . . . . . . . 10 𝑥((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦)
23 nfv 1918 . . . . . . . . . 10 𝑥 𝐶 ∈ (0[,)+∞)
24 simp3 1139 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝑘𝐵)
25 sge0iunmptlemre.c . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
26 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
2726fvmpt2 7007 . . . . . . . . . . . . . . 15 ((𝑘𝐵𝐶 ∈ (0[,]+∞)) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2824, 25, 27syl2anc 585 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2928eqcomd 2739 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 = ((𝑘𝐵𝐶)‘𝑘))
30253expa 1119 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
3130, 26fmptd 7111 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
32313adant3 1133 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
33 sge0iunmptlemre.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑊)
34333adant3 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → 𝐵𝑊)
35 sge0iunmptlemre.re . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
36353adant3 1133 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
3734, 32, 36sge0rern 45091 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → ¬ +∞ ∈ ran (𝑘𝐵𝐶))
3832, 37fge0iccico 45073 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,)+∞))
3938, 24ffvelcdmd 7085 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) ∈ (0[,)+∞))
4029, 39eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞))
41403exp 1120 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4241ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4322, 23, 42rexlimd 3264 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,)+∞)))
4412, 43mpd 15 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → 𝐶 ∈ (0[,)+∞))
458, 44sge0fsummpt 45093 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑦𝐶)) = Σ𝑘𝑦 𝐶)
46 sseqin2 4215 . . . . . . . . . . . . . 14 (𝑦 𝑥𝐴 𝐵 ↔ ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4746biimpi 215 . . . . . . . . . . . . 13 (𝑦 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4847eqcomd 2739 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵𝑦 = ( 𝑥𝐴 𝐵𝑦))
49 iunin1 5075 . . . . . . . . . . . . 13 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦)
5049a1i 11 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦))
5148, 50eqtr4d 2776 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵𝑦 = 𝑥𝐴 (𝐵𝑦))
523, 51syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 = 𝑥𝐴 (𝐵𝑦))
5352sumeq1d 15644 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
5453adantl 483 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
55 simpl 484 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝜑)
5633adantlr 714 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴) → 𝐵𝑊)
57 sge0iunmptlemre.dj . . . . . . . . . . 11 (𝜑Disj 𝑥𝐴 𝐵)
5857adantr 482 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → Disj 𝑥𝐴 𝐵)
59 rge0ssre 13430 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
60 ax-resscn 11164 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
6159, 60sstri 3991 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
6261, 40sselid 3980 . . . . . . . . . . 11 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
63623adant1r 1178 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
64 simpr 486 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → 𝑦 ∈ Fin)
6556, 58, 63, 64fsumiunss 44278 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6655, 8, 65syl2anc 585 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6754, 66eqtrd 2773 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
686, 45, 673eqtrd 2777 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6956, 58, 64disjinfi 43877 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ Fin)
70 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → 𝑦 ∈ Fin)
71 inss2 4229 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦
7271a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦)
73 ssfi 9170 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7470, 72, 73syl2anc 585 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7574ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
76 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
77 elrabi 3677 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑤𝐴)
7877ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
79 elinel1 4195 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) → 𝑘𝑤 / 𝑥𝐵)
8079adantl 483 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
81 nfv 1918 . . . . . . . . . . . . . . . 16 𝑥 𝑤𝐴
82 nfcv 2904 . . . . . . . . . . . . . . . . 17 𝑥𝑘
83 nfcsb1v 3918 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
8482, 83nfel 2918 . . . . . . . . . . . . . . . 16 𝑥 𝑘𝑤 / 𝑥𝐵
8513, 81, 84nf3an 1905 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)
8685, 23nfim 1900 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
87 eleq1w 2817 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
88 csbeq1a 3907 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
8988eleq2d 2820 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑘𝐵𝑘𝑤 / 𝑥𝐵))
9087, 893anbi23d 1440 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)))
9190imbi1d 342 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))))
9286, 91, 40chvarfv 2234 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
9376, 78, 80, 92syl3anc 1372 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9493adantllr 718 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9575, 94fsumge0cl 44276 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶 ∈ (0[,)+∞))
9669, 95sge0fsummpt 45093 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
97 inss2 4229 . . . . . . . . . . . . . . . . 17 (𝐵𝑦) ⊆ 𝑦
9897a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin → (𝐵𝑦) ⊆ 𝑦)
99 ssfi 9170 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ (𝐵𝑦) ⊆ 𝑦) → (𝐵𝑦) ∈ Fin)
10070, 98, 99syl2anc 585 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝐵𝑦) ∈ Fin)
101100ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝐵𝑦) ∈ Fin)
102 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝜑)
103 rabid 3453 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↔ (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
104103biimpi 215 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
105104simpld 496 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑥𝐴)
106105ad2antlr 726 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑥𝐴)
107 elinel1 4195 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝑦) → 𝑘𝐵)
108107adantl 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑘𝐵)
109102, 106, 108, 40syl3anc 1372 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
110109adantllr 718 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
111101, 110sge0fsummpt 45093 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = Σ𝑘 ∈ (𝐵𝑦)𝐶)
112111mpteq2dva 5248 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶))
113 nfrab1 3452 . . . . . . . . . . . . . 14 𝑥{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
114 nfcv 2904 . . . . . . . . . . . . . 14 𝑤{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
115 nfcv 2904 . . . . . . . . . . . . . 14 𝑤Σ𝑘 ∈ (𝐵𝑦)𝐶
11683, 14nfin 4216 . . . . . . . . . . . . . . 15 𝑥(𝑤 / 𝑥𝐵𝑦)
117 nfcv 2904 . . . . . . . . . . . . . . 15 𝑥𝐶
118116, 117nfsum 15634 . . . . . . . . . . . . . 14 𝑥Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
11988ineq1d 4211 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐵𝑦) = (𝑤 / 𝑥𝐵𝑦))
120119sumeq1d 15644 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
121113, 114, 115, 118, 120cbvmptf 5257 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
122121a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶))
123112, 122eqtr2d 2774 . . . . . . . . . . 11 ((𝜑𝑦 ∈ Fin) → (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
124123fveq2d 6893 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
125124eqcomd 2739 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)))
126120, 114, 113, 115, 118cbvsum 15638 . . . . . . . . . 10 Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
127126a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
12896, 125, 1273eqtr4d 2783 . . . . . . . 8 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
12955, 8, 128syl2anc 585 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
130129eqcomd 2739 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
13168, 130eqtrd 2773 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
132 sge0iunmptlemre.a . . . . . . . . 9 (𝜑𝐴𝑉)
13377ssriv 3986 . . . . . . . . . 10 {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴
134133a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴)
135132, 134ssexd 5324 . . . . . . . 8 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ V)
136 vex 3479 . . . . . . . . . . . . 13 𝑦 ∈ V
137136inex2 5318 . . . . . . . . . . . 12 (𝑤 / 𝑥𝐵𝑦) ∈ V
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 / 𝑥𝐵𝑦) ∈ V)
139 icossicc 13410 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
140 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
141 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
14279adantl 483 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
143140, 141, 142, 92syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
144139, 143sselid 3980 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
145 eqid 2733 . . . . . . . . . . . 12 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
146144, 145fmptd 7111 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶):(𝑤 / 𝑥𝐵𝑦)⟶(0[,]+∞))
147138, 146sge0cl 45084 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
14877, 147sylan2 594 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
149 nfcv 2904 . . . . . . . . . 10 𝑤^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))
150 nfcv 2904 . . . . . . . . . . 11 𝑥Σ^
151116, 117nfmpt 5255 . . . . . . . . . . 11 𝑥(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
152150, 151nffv 6899 . . . . . . . . . 10 𝑥^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
153119mpteq1d 5243 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
154153fveq2d 6893 . . . . . . . . . 10 (𝑥 = 𝑤 → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
155113, 114, 149, 152, 154cbvmptf 5257 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
156148, 155fmptd 7111 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))):{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}⟶(0[,]+∞))
157135, 156sge0xrcl 45088 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
158157adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
159 eqid 2733 . . . . . . . . 9 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
160147, 159fmptd 7111 . . . . . . . 8 (𝜑 → (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))):𝐴⟶(0[,]+∞))
161132, 160sge0xrcl 45088 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
162161adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
16355, 2syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
164155fveq2i 6892 . . . . . . . . 9 ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))))
165164a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
166132, 147, 134sge0lessmpt 45102 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
167165, 166eqbrtrd 5170 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
168167adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
169149, 152, 154cbvmpt 5259 . . . . . . . . . . 11 (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
170169eqcomi 2742 . . . . . . . . . 10 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))
171170fveq2i 6892 . . . . . . . . 9 ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
172171a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
173136inex2 5318 . . . . . . . . . . 11 (𝐵𝑦) ∈ V
174173a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ∈ V)
175107, 30sylan2 594 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
176 eqid 2733 . . . . . . . . . . 11 (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝐵𝑦) ↦ 𝐶)
177175, 176fmptd 7111 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶):(𝐵𝑦)⟶(0[,]+∞))
178174, 177sge0cl 45084 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
17933, 31sge0cl 45084 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
180 inss1 4228 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ⊆ 𝐵)
18233, 30, 181sge0lessmpt 45102 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ≤ (Σ^‘(𝑘𝐵𝐶)))
18313, 132, 178, 179, 182sge0lempt 45113 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
184172, 183eqbrtrd 5170 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
185184adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
186158, 162, 163, 168, 185xrletrd 13138 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
187131, 186eqbrtrd 5170 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
188187ralrimiva 3147 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
189 sge0iunmptlemre.iue . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ V)
190 sge0iunmptlemre.f . . . 4 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
191189, 190, 2sge0lefi 45101 . . 3 (𝜑 → ((Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
192188, 191mpbird 257 . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
193 elpwinss 43722 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
194193resmptd 6039 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦) = (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))))
195194fveq2d 6893 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
196195adantl 483 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
197 elinel2 4196 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
198197adantl 483 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
199 0xr 11258 . . . . . . . . 9 0 ∈ ℝ*
200199a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
201 pnfxr 11265 . . . . . . . . 9 +∞ ∈ ℝ*
202201a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
203 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
204193sselda 3982 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
205204adantll 713 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
206203, 205, 33syl2anc 585 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵𝑊)
207203, 205, 31syl2anc 585 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
208206, 207sge0xrcl 45088 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ*)
209206, 207sge0ge0 45087 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
210203, 205, 35syl2anc 585 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
211 ltpnf 13097 . . . . . . . . 9 ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ → (Σ^‘(𝑘𝐵𝐶)) < +∞)
212210, 211syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) < +∞)
213200, 202, 208, 209, 212elicod 13371 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
214198, 213sge0fsummpt 45093 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
215196, 214eqtrd 2773 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
216 nfv 1918 . . . . . 6 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
217189adantr 482 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴 𝐵 ∈ V)
218190fvmptelcdm 7110 . . . . . . 7 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
219218adantlr 714 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
220198, 210fsumrecl 15677 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ)
221220rexrd 11261 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
222 nfv 1918 . . . . . . . 8 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
223 iunss1 5011 . . . . . . . . . . . 12 (𝑦𝐴 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
224193, 223syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
225224adantl 483 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
226217, 225ssexd 5324 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
227226adantr 482 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑥𝑦 𝐵 ∈ V)
228 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝜑)
229225sselda 3982 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝑘 𝑥𝐴 𝐵)
230228, 229, 218syl2anc 585 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
231230adantlr 714 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
232 simpr 486 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑝 ∈ ℝ+)
233193adantl 483 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
23457adantr 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝐴 𝐵)
235 disjss1 5119 . . . . . . . . . . . 12 (𝑦𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝑦 𝐵))
236233, 234, 235sylc 65 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝑦 𝐵)
2372033adant3 1133 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝜑)
2382053adant3 1133 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑥𝐴)
239 simp3 1139 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑘𝐵)
240237, 238, 239, 25syl3anc 1372 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
241198, 206, 236, 240, 210sge0iunmptlemfi 45116 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
242214, 220eqeltrd 2834 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ)
243241, 242eqeltrd 2834 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
244243adantr 482 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
245222, 227, 231, 232, 244sge0ltfirpmpt 45111 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
246 nfv 1918 . . . . . . . 8 𝑏((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
247 nfre1 3283 . . . . . . . 8 𝑏𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)
248223sspwd 4615 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
249193, 248syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
250249adantr 482 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
251 elinel1 4195 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
252251adantl 483 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
253250, 252sseldd 3983 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝐴 𝐵)
254 elinel2 4196 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
255254adantl 483 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
256253, 255elind 4194 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
257256ad4ant24 753 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
2582573adant3 1133 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
259221ad2antrr 725 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
2602593adant3 1133 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
261 nfv 1918 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin))
262226adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
263230adantlr 714 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
264243adantr 482 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
265251elpwid 4611 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 𝑥𝑦 𝐵)
266265adantl 483 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 𝑥𝑦 𝐵)
267261, 262, 263, 264, 266sge0ssrempt 45108 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
268267rexrd 11261 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
269268adantlr 714 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
270 rpxr 12980 . . . . . . . . . . . . . 14 (𝑝 ∈ ℝ+𝑝 ∈ ℝ*)
271270ad2antlr 726 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ*)
272269, 271xaddcld 13277 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
2732723adant3 1133 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
274 simp3 1139 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
275241, 214eqtr2d 2774 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
276275adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
2772763ad2ant1 1134 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
278267adantlr 714 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
279 rpre 12979 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℝ+𝑝 ∈ ℝ)
280279ad2antlr 726 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ)
281 rexadd 13208 . . . . . . . . . . . . . . 15 (((Σ^‘(𝑘𝑏𝐶)) ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
282278, 280, 281syl2anc 585 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
2832823adant3 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
284277, 283breq12d 5161 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ↔ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)))
285274, 284mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
286260, 273, 285xrltled 13126 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
287 rspe 3247 . . . . . . . . . 10 ((𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
288258, 286, 287syl2anc 585 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
2892883exp 1120 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))))
290246, 247, 289rexlimd 3264 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)))
291245, 290mpd 15 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
292216, 217, 219, 221, 291sge0gerpmpt 45105 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
293215, 292eqbrtrd 5170 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
294293ralrimiva 3147 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
295 eqid 2733 . . . . 5 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
296179, 295fmptd 7111 . . . 4 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
297132, 296, 1sge0lefi 45101 . . 3 (𝜑 → ((Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶))))
298294, 297mpbird 257 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
2991, 2, 192, 298xrletrid 13131 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  csb 3893  cin 3947  wss 3948  c0 4322  𝒫 cpw 4602   ciun 4997  Disj wdisj 5113   class class class wbr 5148  cmpt 5231  cres 5678  wf 6537  cfv 6541  (class class class)co 7406  Fincfn 8936  cc 11105  cr 11106  0cc0 11107   + caddc 11110  +∞cpnf 11242  *cxr 11244   < clt 11245  cle 11246  +crp 12971   +𝑒 cxad 13087  [,)cico 13323  [,]cicc 13324  Σcsu 15629  Σ^csumge0 45065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-inf2 9633  ax-ac2 10455  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-sup 9434  df-oi 9502  df-card 9931  df-acn 9934  df-ac 10108  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-xadd 13090  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630  df-sumge0 45066
This theorem is referenced by:  sge0iunmpt  45121
  Copyright terms: Public domain W3C validator