Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0iunmptlemre Structured version   Visualization version   GIF version

Theorem sge0iunmptlemre 46420
Description: Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
sge0iunmptlemre.a (𝜑𝐴𝑉)
sge0iunmptlemre.b ((𝜑𝑥𝐴) → 𝐵𝑊)
sge0iunmptlemre.dj (𝜑Disj 𝑥𝐴 𝐵)
sge0iunmptlemre.c ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
sge0iunmptlemre.re ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
sge0iunmptlemre.sxr (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
sge0iunmptlemre.ssxr (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
sge0iunmptlemre.f (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
sge0iunmptlemre.iue (𝜑 𝑥𝐴 𝐵 ∈ V)
Assertion
Ref Expression
sge0iunmptlemre (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Distinct variable groups:   𝐴,𝑘,𝑥   𝐵,𝑘   𝑥,𝐶   𝑥,𝑊   𝜑,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑘)   𝑉(𝑥,𝑘)   𝑊(𝑘)

Proof of Theorem sge0iunmptlemre
Dummy variables 𝑏 𝑝 𝑦 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sge0iunmptlemre.sxr . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ∈ ℝ*)
2 sge0iunmptlemre.ssxr . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
3 elpwinss 45050 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 𝑥𝐴 𝐵)
43resmptd 6014 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → ((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦) = (𝑘𝑦𝐶))
54fveq2d 6865 . . . . . . . 8 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
65adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑘𝑦𝐶)))
7 elinel2 4168 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 ∈ Fin)
87adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝑦 ∈ Fin)
93sselda 3949 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → 𝑘 𝑥𝐴 𝐵)
10 eliun 4962 . . . . . . . . . . 11 (𝑘 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑘𝐵)
119, 10sylib 218 . . . . . . . . . 10 ((𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
1211adantll 714 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → ∃𝑥𝐴 𝑘𝐵)
13 nfv 1914 . . . . . . . . . . . 12 𝑥𝜑
14 nfcv 2892 . . . . . . . . . . . . 13 𝑥𝑦
15 nfiu1 4994 . . . . . . . . . . . . . . 15 𝑥 𝑥𝐴 𝐵
1615nfpw 4585 . . . . . . . . . . . . . 14 𝑥𝒫 𝑥𝐴 𝐵
17 nfcv 2892 . . . . . . . . . . . . . 14 𝑥Fin
1816, 17nfin 4190 . . . . . . . . . . . . 13 𝑥(𝒫 𝑥𝐴 𝐵 ∩ Fin)
1914, 18nfel 2907 . . . . . . . . . . . 12 𝑥 𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)
2013, 19nfan 1899 . . . . . . . . . . 11 𝑥(𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
21 nfv 1914 . . . . . . . . . . 11 𝑥 𝑘𝑦
2220, 21nfan 1899 . . . . . . . . . 10 𝑥((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦)
23 nfv 1914 . . . . . . . . . 10 𝑥 𝐶 ∈ (0[,)+∞)
24 simp3 1138 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝑘𝐵)
25 sge0iunmptlemre.c . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
26 eqid 2730 . . . . . . . . . . . . . . . 16 (𝑘𝐵𝐶) = (𝑘𝐵𝐶)
2726fvmpt2 6982 . . . . . . . . . . . . . . 15 ((𝑘𝐵𝐶 ∈ (0[,]+∞)) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2824, 25, 27syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) = 𝐶)
2928eqcomd 2736 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 = ((𝑘𝐵𝐶)‘𝑘))
30253expa 1118 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
3130, 26fmptd 7089 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
32313adant3 1132 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
33 sge0iunmptlemre.b . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝐵𝑊)
34333adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → 𝐵𝑊)
35 sge0iunmptlemre.re . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
36353adant3 1132 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴𝑘𝐵) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
3734, 32, 36sge0rern 46393 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴𝑘𝐵) → ¬ +∞ ∈ ran (𝑘𝐵𝐶))
3832, 37fge0iccico 46375 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴𝑘𝐵) → (𝑘𝐵𝐶):𝐵⟶(0[,)+∞))
3938, 24ffvelcdmd 7060 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴𝑘𝐵) → ((𝑘𝐵𝐶)‘𝑘) ∈ (0[,)+∞))
4029, 39eqeltrd 2829 . . . . . . . . . . . 12 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞))
41403exp 1119 . . . . . . . . . . 11 (𝜑 → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4241ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (𝑥𝐴 → (𝑘𝐵𝐶 ∈ (0[,)+∞))))
4322, 23, 42rexlimd 3245 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → (∃𝑥𝐴 𝑘𝐵𝐶 ∈ (0[,)+∞)))
4412, 43mpd 15 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) ∧ 𝑘𝑦) → 𝐶 ∈ (0[,)+∞))
458, 44sge0fsummpt 46395 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑦𝐶)) = Σ𝑘𝑦 𝐶)
46 sseqin2 4189 . . . . . . . . . . . . . 14 (𝑦 𝑥𝐴 𝐵 ↔ ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4746biimpi 216 . . . . . . . . . . . . 13 (𝑦 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵𝑦) = 𝑦)
4847eqcomd 2736 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵𝑦 = ( 𝑥𝐴 𝐵𝑦))
49 iunin1 5039 . . . . . . . . . . . . 13 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦)
5049a1i 11 . . . . . . . . . . . 12 (𝑦 𝑥𝐴 𝐵 𝑥𝐴 (𝐵𝑦) = ( 𝑥𝐴 𝐵𝑦))
5148, 50eqtr4d 2768 . . . . . . . . . . 11 (𝑦 𝑥𝐴 𝐵𝑦 = 𝑥𝐴 (𝐵𝑦))
523, 51syl 17 . . . . . . . . . 10 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → 𝑦 = 𝑥𝐴 (𝐵𝑦))
5352sumeq1d 15673 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
5453adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶)
55 simpl 482 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → 𝜑)
5633adantlr 715 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴) → 𝐵𝑊)
57 sge0iunmptlemre.dj . . . . . . . . . . 11 (𝜑Disj 𝑥𝐴 𝐵)
5857adantr 480 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → Disj 𝑥𝐴 𝐵)
59 rge0ssre 13424 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ ℝ
60 ax-resscn 11132 . . . . . . . . . . . . 13 ℝ ⊆ ℂ
6159, 60sstri 3959 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℂ
6261, 40sselid 3947 . . . . . . . . . . 11 ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
63623adant1r 1178 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)
64 simpr 484 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → 𝑦 ∈ Fin)
6556, 58, 63, 64fsumiunss 45580 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6655, 8, 65syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘 𝑥𝐴 (𝐵𝑦)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6754, 66eqtrd 2765 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑘𝑦 𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
686, 45, 673eqtrd 2769 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
6956, 58, 64disjinfi 45193 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ Fin)
70 id 22 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → 𝑦 ∈ Fin)
71 inss2 4204 . . . . . . . . . . . . . 14 (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦
7271a1i 11 . . . . . . . . . . . . 13 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦)
73 ssfi 9143 . . . . . . . . . . . . 13 ((𝑦 ∈ Fin ∧ (𝑤 / 𝑥𝐵𝑦) ⊆ 𝑦) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7470, 72, 73syl2anc 584 . . . . . . . . . . . 12 (𝑦 ∈ Fin → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
7574ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝑤 / 𝑥𝐵𝑦) ∈ Fin)
76 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
77 elrabi 3657 . . . . . . . . . . . . . 14 (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑤𝐴)
7877ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
79 elinel1 4167 . . . . . . . . . . . . . 14 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) → 𝑘𝑤 / 𝑥𝐵)
8079adantl 481 . . . . . . . . . . . . 13 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
81 nfv 1914 . . . . . . . . . . . . . . . 16 𝑥 𝑤𝐴
82 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑥𝑘
83 nfcsb1v 3889 . . . . . . . . . . . . . . . . 17 𝑥𝑤 / 𝑥𝐵
8482, 83nfel 2907 . . . . . . . . . . . . . . . 16 𝑥 𝑘𝑤 / 𝑥𝐵
8513, 81, 84nf3an 1901 . . . . . . . . . . . . . . 15 𝑥(𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)
8685, 23nfim 1896 . . . . . . . . . . . . . 14 𝑥((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
87 eleq1w 2812 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑥𝐴𝑤𝐴))
88 csbeq1a 3879 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑤𝐵 = 𝑤 / 𝑥𝐵)
8988eleq2d 2815 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑤 → (𝑘𝐵𝑘𝑤 / 𝑥𝐵))
9087, 893anbi23d 1441 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → ((𝜑𝑥𝐴𝑘𝐵) ↔ (𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵)))
9190imbi1d 341 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ (0[,)+∞)) ↔ ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))))
9286, 91, 40chvarfv 2241 . . . . . . . . . . . . 13 ((𝜑𝑤𝐴𝑘𝑤 / 𝑥𝐵) → 𝐶 ∈ (0[,)+∞))
9376, 78, 80, 92syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9493adantllr 719 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
9575, 94fsumge0cl 45578 . . . . . . . . . 10 (((𝜑𝑦 ∈ Fin) ∧ 𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶 ∈ (0[,)+∞))
9669, 95sge0fsummpt 46395 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
97 inss2 4204 . . . . . . . . . . . . . . . . 17 (𝐵𝑦) ⊆ 𝑦
9897a1i 11 . . . . . . . . . . . . . . . 16 (𝑦 ∈ Fin → (𝐵𝑦) ⊆ 𝑦)
99 ssfi 9143 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ Fin ∧ (𝐵𝑦) ⊆ 𝑦) → (𝐵𝑦) ∈ Fin)
10070, 98, 99syl2anc 584 . . . . . . . . . . . . . . 15 (𝑦 ∈ Fin → (𝐵𝑦) ∈ Fin)
101100ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (𝐵𝑦) ∈ Fin)
102 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝜑)
103 rabid 3430 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↔ (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
104103biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → (𝑥𝐴 ∧ (𝐵𝑦) ≠ ∅))
105104simpld 494 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} → 𝑥𝐴)
106105ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑥𝐴)
107 elinel1 4167 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝐵𝑦) → 𝑘𝐵)
108107adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝑘𝐵)
109102, 106, 108, 40syl3anc 1373 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
110109adantllr 719 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
111101, 110sge0fsummpt 46395 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ Fin) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = Σ𝑘 ∈ (𝐵𝑦)𝐶)
112111mpteq2dva 5203 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶))
113 nfrab1 3429 . . . . . . . . . . . . . 14 𝑥{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
114 nfcv 2892 . . . . . . . . . . . . . 14 𝑤{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}
115 nfcv 2892 . . . . . . . . . . . . . 14 𝑤Σ𝑘 ∈ (𝐵𝑦)𝐶
11683, 14nfin 4190 . . . . . . . . . . . . . . 15 𝑥(𝑤 / 𝑥𝐵𝑦)
117 nfcv 2892 . . . . . . . . . . . . . . 15 𝑥𝐶
118116, 117nfsum 15664 . . . . . . . . . . . . . 14 𝑥Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
11988ineq1d 4185 . . . . . . . . . . . . . . 15 (𝑥 = 𝑤 → (𝐵𝑦) = (𝑤 / 𝑥𝐵𝑦))
120119sumeq1d 15673 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
121113, 114, 115, 118, 120cbvmptf 5210 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
122121a1i 11 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ Fin) → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝐵𝑦)𝐶) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶))
123112, 122eqtr2d 2766 . . . . . . . . . . 11 ((𝜑𝑦 ∈ Fin) → (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶) = (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
124123fveq2d 6865 . . . . . . . . . 10 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
125124eqcomd 2736 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)))
126120, 115, 118cbvsum 15668 . . . . . . . . . 10 Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶
127126a1i 11 . . . . . . . . 9 ((𝜑𝑦 ∈ Fin) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = Σ𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)𝐶)
12896, 125, 1273eqtr4d 2775 . . . . . . . 8 ((𝜑𝑦 ∈ Fin) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
12955, 8, 128syl2anc 584 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶)
130129eqcomd 2736 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}Σ𝑘 ∈ (𝐵𝑦)𝐶 = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
13168, 130eqtrd 2765 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) = (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
132 sge0iunmptlemre.a . . . . . . . . 9 (𝜑𝐴𝑉)
13377ssriv 3953 . . . . . . . . . 10 {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴
134133a1i 11 . . . . . . . . 9 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ⊆ 𝐴)
135132, 134ssexd 5282 . . . . . . . 8 (𝜑 → {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ∈ V)
136 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
137136inex2 5276 . . . . . . . . . . . 12 (𝑤 / 𝑥𝐵𝑦) ∈ V
138137a1i 11 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑤 / 𝑥𝐵𝑦) ∈ V)
139 icossicc 13404 . . . . . . . . . . . . 13 (0[,)+∞) ⊆ (0[,]+∞)
140 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝜑)
141 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑤𝐴)
14279adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝑘𝑤 / 𝑥𝐵)
143140, 141, 142, 92syl3anc 1373 . . . . . . . . . . . . 13 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,)+∞))
144139, 143sselid 3947 . . . . . . . . . . . 12 (((𝜑𝑤𝐴) ∧ 𝑘 ∈ (𝑤 / 𝑥𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
145 eqid 2730 . . . . . . . . . . . 12 (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
146144, 145fmptd 7089 . . . . . . . . . . 11 ((𝜑𝑤𝐴) → (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶):(𝑤 / 𝑥𝐵𝑦)⟶(0[,]+∞))
147138, 146sge0cl 46386 . . . . . . . . . 10 ((𝜑𝑤𝐴) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
14877, 147sylan2 593 . . . . . . . . 9 ((𝜑𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}) → (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
149 nfcv 2892 . . . . . . . . . 10 𝑤^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))
150 nfcv 2892 . . . . . . . . . . 11 𝑥Σ^
151116, 117nfmpt 5208 . . . . . . . . . . 11 𝑥(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)
152150, 151nffv 6871 . . . . . . . . . 10 𝑥^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
153119mpteq1d 5200 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))
154153fveq2d 6865 . . . . . . . . . 10 (𝑥 = 𝑤 → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) = (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
155113, 114, 149, 152, 154cbvmptf 5210 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
156148, 155fmptd 7089 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))):{𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅}⟶(0[,]+∞))
157135, 156sge0xrcl 46390 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
158157adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
159 eqid 2730 . . . . . . . . 9 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
160147, 159fmptd 7089 . . . . . . . 8 (𝜑 → (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))):𝐴⟶(0[,]+∞))
161132, 160sge0xrcl 46390 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
162161adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ∈ ℝ*)
16355, 2syl 17 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ*)
164155fveq2i 6864 . . . . . . . . 9 ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))))
165164a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
166132, 147, 134sge0lessmpt 46404 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
167165, 166eqbrtrd 5132 . . . . . . 7 (𝜑 → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
168167adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))))
169149, 152, 154cbvmpt 5212 . . . . . . . . . . 11 (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))) = (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))
170169eqcomi 2739 . . . . . . . . . 10 (𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))
171170fveq2i 6864 . . . . . . . . 9 ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶))))
172171a1i 11 . . . . . . . 8 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))))
173136inex2 5276 . . . . . . . . . . 11 (𝐵𝑦) ∈ V
174173a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ∈ V)
175107, 30sylan2 593 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑘 ∈ (𝐵𝑦)) → 𝐶 ∈ (0[,]+∞))
176 eqid 2730 . . . . . . . . . . 11 (𝑘 ∈ (𝐵𝑦) ↦ 𝐶) = (𝑘 ∈ (𝐵𝑦) ↦ 𝐶)
177175, 176fmptd 7089 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝑘 ∈ (𝐵𝑦) ↦ 𝐶):(𝐵𝑦)⟶(0[,]+∞))
178174, 177sge0cl 46386 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ∈ (0[,]+∞))
17933, 31sge0cl 46386 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,]+∞))
180 inss1 4203 . . . . . . . . . . 11 (𝐵𝑦) ⊆ 𝐵
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑥𝐴) → (𝐵𝑦) ⊆ 𝐵)
18233, 30, 181sge0lessmpt 46404 . . . . . . . . 9 ((𝜑𝑥𝐴) → (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)) ≤ (Σ^‘(𝑘𝐵𝐶)))
18313, 132, 178, 179, 182sge0lempt 46415 . . . . . . . 8 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
184172, 183eqbrtrd 5132 . . . . . . 7 (𝜑 → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
185184adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑤𝐴 ↦ (Σ^‘(𝑘 ∈ (𝑤 / 𝑥𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
186158, 162, 163, 168, 185xrletrd 13129 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘(𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝑦) ≠ ∅} ↦ (Σ^‘(𝑘 ∈ (𝐵𝑦) ↦ 𝐶)))) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
187131, 186eqbrtrd 5132 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)) → (Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
188187ralrimiva 3126 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
189 sge0iunmptlemre.iue . . . 4 (𝜑 𝑥𝐴 𝐵 ∈ V)
190 sge0iunmptlemre.f . . . 4 (𝜑 → (𝑘 𝑥𝐴 𝐵𝐶): 𝑥𝐴 𝐵⟶(0[,]+∞))
191189, 190, 2sge0lefi 46403 . . 3 (𝜑 → ((Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ↔ ∀𝑦 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)(Σ^‘((𝑘 𝑥𝐴 𝐵𝐶) ↾ 𝑦)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))))))
192188, 191mpbird 257 . 2 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ≤ (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
193 elpwinss 45050 . . . . . . . . 9 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
194193resmptd 6014 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦) = (𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶))))
195194fveq2d 6865 . . . . . . 7 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
196195adantl 481 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
197 elinel2 4168 . . . . . . . 8 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
198197adantl 481 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
199 0xr 11228 . . . . . . . . 9 0 ∈ ℝ*
200199a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ∈ ℝ*)
201 pnfxr 11235 . . . . . . . . 9 +∞ ∈ ℝ*
202201a1i 11 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → +∞ ∈ ℝ*)
203 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝜑)
204193sselda 3949 . . . . . . . . . . 11 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑥𝑦) → 𝑥𝐴)
205204adantll 714 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝑥𝐴)
206203, 205, 33syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 𝐵𝑊)
207203, 205, 31syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (𝑘𝐵𝐶):𝐵⟶(0[,]+∞))
208206, 207sge0xrcl 46390 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ*)
209206, 207sge0ge0 46389 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → 0 ≤ (Σ^‘(𝑘𝐵𝐶)))
210203, 205, 35syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ ℝ)
211 ltpnf 13087 . . . . . . . . 9 ((Σ^‘(𝑘𝐵𝐶)) ∈ ℝ → (Σ^‘(𝑘𝐵𝐶)) < +∞)
212210, 211syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) < +∞)
213200, 202, 208, 209, 212elicod 13363 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦) → (Σ^‘(𝑘𝐵𝐶)) ∈ (0[,)+∞))
214198, 213sge0fsummpt 46395 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
215196, 214eqtrd 2765 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) = Σ𝑥𝑦^‘(𝑘𝐵𝐶)))
216 nfv 1914 . . . . . 6 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
217189adantr 480 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝐴 𝐵 ∈ V)
218190fvmptelcdm 7088 . . . . . . 7 ((𝜑𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
219218adantlr 715 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝐴 𝐵) → 𝐶 ∈ (0[,]+∞))
220198, 210fsumrecl 15707 . . . . . . 7 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ)
221220rexrd 11231 . . . . . 6 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
222 nfv 1914 . . . . . . . 8 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
223 iunss1 4973 . . . . . . . . . . . 12 (𝑦𝐴 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
224193, 223syl 17 . . . . . . . . . . 11 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
225224adantl 481 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 𝑥𝐴 𝐵)
226217, 225ssexd 5282 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
227226adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑥𝑦 𝐵 ∈ V)
228 simpll 766 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝜑)
229225sselda 3949 . . . . . . . . . 10 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝑘 𝑥𝐴 𝐵)
230228, 229, 218syl2anc 584 . . . . . . . . 9 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
231230adantlr 715 . . . . . . . 8 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
232 simpr 484 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → 𝑝 ∈ ℝ+)
233193adantl 481 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
23457adantr 480 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝐴 𝐵)
235 disjss1 5083 . . . . . . . . . . . 12 (𝑦𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥𝑦 𝐵))
236233, 234, 235sylc 65 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Disj 𝑥𝑦 𝐵)
2372033adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝜑)
2382053adant3 1132 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑥𝐴)
239 simp3 1138 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝑘𝐵)
240237, 238, 239, 25syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑥𝑦𝑘𝐵) → 𝐶 ∈ (0[,]+∞))
241198, 206, 236, 240, 210sge0iunmptlemfi 46418 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) = (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))))
242214, 220eqeltrd 2829 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑥𝑦 ↦ (Σ^‘(𝑘𝐵𝐶)))) ∈ ℝ)
243241, 242eqeltrd 2829 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
244243adantr 480 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
245222, 227, 231, 232, 244sge0ltfirpmpt 46413 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
246 nfv 1914 . . . . . . . 8 𝑏((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+)
247 nfre1 3263 . . . . . . . 8 𝑏𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)
248223sspwd 4579 . . . . . . . . . . . . . . . 16 (𝑦𝐴 → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
249193, 248syl 17 . . . . . . . . . . . . . . 15 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
250249adantr 480 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝒫 𝑥𝑦 𝐵 ⊆ 𝒫 𝑥𝐴 𝐵)
251 elinel1 4167 . . . . . . . . . . . . . . 15 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
252251adantl 481 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝑦 𝐵)
253250, 252sseldd 3950 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ 𝒫 𝑥𝐴 𝐵)
254 elinel2 4168 . . . . . . . . . . . . . 14 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 ∈ Fin)
255254adantl 481 . . . . . . . . . . . . 13 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ Fin)
256253, 255elind 4166 . . . . . . . . . . . 12 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
257256ad4ant24 754 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
2582573adant3 1132 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → 𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin))
259221ad2antrr 726 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
2602593adant3 1132 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ∈ ℝ*)
261 nfv 1914 . . . . . . . . . . . . . . . 16 𝑘((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin))
262226adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑥𝑦 𝐵 ∈ V)
263230adantlr 715 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) ∧ 𝑘 𝑥𝑦 𝐵) → 𝐶 ∈ (0[,]+∞))
264243adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) ∈ ℝ)
265251elpwid 4575 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → 𝑏 𝑥𝑦 𝐵)
266265adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑏 𝑥𝑦 𝐵)
267261, 262, 263, 264, 266sge0ssrempt 46410 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
268267rexrd 11231 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
269268adantlr 715 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ*)
270 rpxr 12968 . . . . . . . . . . . . . 14 (𝑝 ∈ ℝ+𝑝 ∈ ℝ*)
271270ad2antlr 727 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ*)
272269, 271xaddcld 13268 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
2732723adant3 1132 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ∈ ℝ*)
274 simp3 1138 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
275241, 214eqtr2d 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
276275adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
2772763ad2ant1 1133 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) = (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)))
278267adantlr 715 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → (Σ^‘(𝑘𝑏𝐶)) ∈ ℝ)
279 rpre 12967 . . . . . . . . . . . . . . . 16 (𝑝 ∈ ℝ+𝑝 ∈ ℝ)
280279ad2antlr 727 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → 𝑝 ∈ ℝ)
281 rexadd 13199 . . . . . . . . . . . . . . 15 (((Σ^‘(𝑘𝑏𝐶)) ∈ ℝ ∧ 𝑝 ∈ ℝ) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
282278, 280, 281syl2anc 584 . . . . . . . . . . . . . 14 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
2832823adant3 1132 . . . . . . . . . . . . 13 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) = ((Σ^‘(𝑘𝑏𝐶)) + 𝑝))
284277, 283breq12d 5123 . . . . . . . . . . . 12 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → (Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝) ↔ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)))
285274, 284mpbird 257 . . . . . . . . . . 11 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
286260, 273, 285xrltled 13117 . . . . . . . . . 10 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
287 rspe 3228 . . . . . . . . . 10 ((𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin) ∧ Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
288258, 286, 287syl2anc 584 . . . . . . . . 9 ((((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) ∧ 𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) ∧ (Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝)) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
2892883exp 1119 . . . . . . . 8 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin) → ((Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))))
290246, 247, 289rexlimd 3245 . . . . . . 7 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → (∃𝑏 ∈ (𝒫 𝑥𝑦 𝐵 ∩ Fin)(Σ^‘(𝑘 𝑥𝑦 𝐵𝐶)) < ((Σ^‘(𝑘𝑏𝐶)) + 𝑝) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝)))
291245, 290mpd 15 . . . . . 6 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑝 ∈ ℝ+) → ∃𝑏 ∈ (𝒫 𝑥𝐴 𝐵 ∩ Fin)Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ ((Σ^‘(𝑘𝑏𝐶)) +𝑒 𝑝))
292216, 217, 219, 221, 291sge0gerpmpt 46407 . . . . 5 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑥𝑦^‘(𝑘𝐵𝐶)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
293215, 292eqbrtrd 5132 . . . 4 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
294293ralrimiva 3126 . . 3 (𝜑 → ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
295 eqid 2730 . . . . 5 (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) = (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))
296179, 295fmptd 7089 . . . 4 (𝜑 → (𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))):𝐴⟶(0[,]+∞))
297132, 296, 1sge0lefi 46403 . . 3 (𝜑 → ((Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘((𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶))) ↾ 𝑦)) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶))))
298294, 297mpbird 257 . 2 (𝜑 → (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))) ≤ (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)))
2991, 2, 192, 298xrletrid 13122 1 (𝜑 → (Σ^‘(𝑘 𝑥𝐴 𝐵𝐶)) = (Σ^‘(𝑥𝐴 ↦ (Σ^‘(𝑘𝐵𝐶)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  csb 3865  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566   ciun 4958  Disj wdisj 5077   class class class wbr 5110  cmpt 5191  cres 5643  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075   + caddc 11078  +∞cpnf 11212  *cxr 11214   < clt 11215  cle 11216  +crp 12958   +𝑒 cxad 13077  [,)cico 13315  [,]cicc 13316  Σcsu 15659  Σ^csumge0 46367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xadd 13080  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-sumge0 46368
This theorem is referenced by:  sge0iunmpt  46423
  Copyright terms: Public domain W3C validator