| Step | Hyp | Ref
| Expression |
| 1 | | xrltso 13183 |
. . . 4
⊢ < Or
ℝ* |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → < Or
ℝ*) |
| 3 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑐𝜑 |
| 4 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑐𝑠 |
| 5 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐(𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 6 | 5 | nfrn 5963 |
. . . . . . . . . 10
⊢
Ⅎ𝑐ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 7 | 4, 6 | nfel 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 8 | 3, 7 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑐(𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 9 | | iccssxr 13470 |
. . . . . . . . . . . . . 14
⊢
(0[,]+∞) ⊆ ℝ* |
| 10 | | xrge0base 33016 |
. . . . . . . . . . . . . . 15
⊢
(0[,]+∞) = (Base‘(ℝ*𝑠
↾s (0[,]+∞))) |
| 11 | | xrge0cmn 21426 |
. . . . . . . . . . . . . . . 16
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
| 12 | 11 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 13 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 14 | 13 | elin2d 4205 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ Fin) |
| 15 | | simpll 767 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝜑) |
| 16 | 13 | elin1d 4204 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 18 | | vex 3484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑐 ∈ V |
| 19 | 18 | elpw 4604 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 20 | 17, 19 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 21 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ 𝑐) |
| 22 | 20, 21 | sseldd 3984 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 23 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝜑 |
| 24 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗𝑧 |
| 25 | | nfiu1 5027 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| 26 | 24, 25 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| 27 | 23, 26 | nfan 1899 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 28 | | nfv 1914 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) |
| 29 | | esum2d.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘𝐹 |
| 30 | | nfcv 2905 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(0[,]+∞) |
| 31 | 29, 30 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘 𝐹 ∈
(0[,]+∞) |
| 32 | | esum2d.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐹 = 𝐶) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐹 = 𝐶) |
| 34 | | simp-5l 785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝜑) |
| 35 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝑗 ∈ 𝐴) |
| 36 | | simplr 769 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝑘 ∈ 𝐵) |
| 37 | | esum2d.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 38 | 34, 35, 36, 37 | syl12anc 837 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐶 ∈ (0[,]+∞)) |
| 39 | 33, 38 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐹 ∈ (0[,]+∞)) |
| 40 | | elsnxp 6311 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝐴 → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉)) |
| 41 | 40 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
| 42 | 41 | adantll 714 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
| 43 | 28, 31, 39, 42 | r19.29af2 3267 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
| 44 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 45 | | eliun 4995 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝐴 𝑧 ∈ ({𝑗} × 𝐵)) |
| 46 | 44, 45 | sylib 218 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → ∃𝑗 ∈ 𝐴 𝑧 ∈ ({𝑗} × 𝐵)) |
| 47 | 27, 43, 46 | r19.29af 3268 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
| 48 | 15, 22, 47 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝐹 ∈ (0[,]+∞)) |
| 49 | 48 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑧 ∈ 𝑐 𝐹 ∈ (0[,]+∞)) |
| 50 | 10, 12, 14, 49 | gsummptcl 19985 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ (0[,]+∞)) |
| 51 | 9, 50 | sselid 3981 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
| 52 | 51 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) = (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 54 | 53 | rnmptss 7143 |
. . . . . . . . . . . 12
⊢
(∀𝑐 ∈
(𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ℝ* → ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
| 55 | 52, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
| 56 | 55 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
| 57 | | simpllr 776 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 58 | 56, 57 | sseldd 3984 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ℝ*) |
| 59 | | esum2d.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 60 | | vsnex 5434 |
. . . . . . . . . . . . . . 15
⊢ {𝑗} ∈ V |
| 61 | | esum2d.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| 62 | | xpexg 7770 |
. . . . . . . . . . . . . . 15
⊢ (({𝑗} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝑗} × 𝐵) ∈ V) |
| 63 | 60, 61, 62 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ({𝑗} × 𝐵) ∈ V) |
| 64 | 63 | ralrimiva 3146 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 65 | | iunexg 7988 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 66 | 59, 64, 65 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 67 | 47 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
| 68 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| 69 | 68 | esumcl 34031 |
. . . . . . . . . . . 12
⊢
((∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V ∧ ∀𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) →
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
| 70 | 66, 67, 69 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
| 71 | 9, 70 | sselid 3981 |
. . . . . . . . . 10
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
| 72 | 71 | ad3antrrr 730 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
| 73 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 74 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧(𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 75 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧𝑐 |
| 76 | 74, 75, 14, 48 | esumgsum 34046 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 77 | 66 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 78 | 47 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
| 79 | 16, 19 | sylib 218 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 80 | 74, 77, 78, 79 | esummono 34055 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 81 | 76, 80 | eqbrtrrd 5167 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 82 | 81 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 84 | 73, 83 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 85 | | xrlenlt 11326 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℝ*
∧ Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) → (𝑠 ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
| 86 | 85 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑠 ∈ ℝ*
∧ Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) ∧ 𝑠 ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
| 87 | 58, 72, 84, 86 | syl21anc 838 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
| 88 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 89 | | ovex 7464 |
. . . . . . . . . 10
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V |
| 90 | 53, 89 | elrnmpti 5973 |
. . . . . . . . 9
⊢ (𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ↔ ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 91 | 88, 90 | sylib 218 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 92 | 8, 87, 91 | r19.29af 3268 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
| 93 | 92 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
| 94 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑐((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 95 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑐 𝑠 < 𝑡 |
| 96 | 6, 95 | nfrexw 3313 |
. . . . . . . . 9
⊢
Ⅎ𝑐∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡 |
| 97 | 76 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 98 | 97 | adantlr 715 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 99 | 98 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → Σ*𝑧 ∈ 𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 100 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 101 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V) |
| 102 | 53 | elrnmpt1 5971 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 103 | 100, 101,
102 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 104 | 99, 103 | eqeltrd 2841 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → Σ*𝑧 ∈ 𝑐𝐹 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 105 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) ∧ 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) → 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) |
| 106 | 105 | breq2d 5155 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) ∧ 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) → (𝑠 < 𝑡 ↔ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹)) |
| 107 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) |
| 108 | 104, 106,
107 | rspcedvd 3624 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
| 109 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝜑 ∧ 𝑠 ∈ ℝ*) |
| 110 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧𝑠 |
| 111 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧
< |
| 112 | 68 | nfesum1 34041 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 |
| 113 | 110, 111,
112 | nfbr 5190 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 |
| 114 | 109, 113 | nfan 1899 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 115 | 66 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 116 | 47 | 3ad2antr3 1191 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵))) → 𝐹 ∈ (0[,]+∞)) |
| 117 | 116 | 3anassrs 1361 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
| 118 | | simplr 769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑠 ∈ ℝ*) |
| 119 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 120 | 114, 115,
117, 118, 119 | esumlub 34061 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 < Σ*𝑧 ∈ 𝑐𝐹) |
| 121 | 94, 96, 108, 120 | r19.29af2 3267 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
| 122 | 121 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ*) → (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
| 123 | 122 | ralrimiva 3146 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
| 124 | 93, 123 | jca 511 |
. . . . 5
⊢ (𝜑 → (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
| 125 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 126 | 125 | breq1d 5153 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (𝑟 < 𝑠 ↔ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
| 127 | 126 | notbid 318 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (¬ 𝑟 < 𝑠 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
| 128 | 127 | ralbidv 3178 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ↔ ∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
| 129 | 125 | breq2d 5155 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (𝑠 < 𝑟 ↔ 𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹)) |
| 130 | 129 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ((𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) ↔ (𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
| 131 | 130 | ralbidv 3178 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) ↔ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
| 132 | 128, 131 | anbi12d 632 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ((∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) ↔ (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)))) |
| 133 | 71, 132 | rspcedv 3615 |
. . . . 5
⊢ (𝜑 → ((∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) → ∃𝑟 ∈ ℝ* (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)))) |
| 134 | 124, 133 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑟 ∈ ℝ* (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
| 135 | 2, 134 | supcl 9498 |
. . 3
⊢ (𝜑 → sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) ∈
ℝ*) |
| 136 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑎𝜑 |
| 137 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑎𝑠 |
| 138 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑎(𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 139 | 138 | nfrn 5963 |
. . . . . 6
⊢
Ⅎ𝑎ran
(𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 140 | 137, 139 | nfel 2920 |
. . . . 5
⊢
Ⅎ𝑎 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 141 | 136, 140 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑎(𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 142 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
| 143 | | simpll 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝜑) |
| 144 | 142 | elin1d 4204 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ 𝒫 𝐴) |
| 145 | | elpwi 4607 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) |
| 146 | 144, 145 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ 𝐴) |
| 147 | 146 | sselda 3983 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝑗 ∈ 𝐴) |
| 148 | 143, 147,
61 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝐵 ∈ 𝑊) |
| 149 | 143 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝜑) |
| 150 | 147 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝑗 ∈ 𝐴) |
| 151 | | simprr 773 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝑘 ∈ 𝐵) |
| 152 | 149, 150,
151, 37 | syl12anc 837 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
| 153 | 142 | elin2d 4205 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin) |
| 154 | 29, 32, 142, 148, 152, 153 | esum2dlem 34093 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑗 ∈ 𝑎Σ*𝑘 ∈ 𝐵𝐶 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹) |
| 155 | | nfv 1914 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
| 156 | | nfcv 2905 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑎 |
| 157 | 37 | anassrs 467 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 158 | 157 | ralrimiva 3146 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ (0[,]+∞)) |
| 159 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐵 |
| 160 | 159 | esumcl 34031 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
𝐵𝐶 ∈ (0[,]+∞)) |
| 161 | 61, 158, 160 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 162 | 143, 147,
161 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 163 | 155, 156,
153, 162 | esumgsum 34046 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑗 ∈ 𝑎Σ*𝑘 ∈ 𝐵𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 164 | 154, 163 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 165 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
| 166 | 66 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
| 167 | 47 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
| 168 | | iunss1 5006 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → ∪
𝑗 ∈ 𝑎 ({𝑗} × 𝐵) ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 169 | 146, 168 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵) ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 170 | 165, 166,
167, 169 | esummono 34055 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 171 | 164, 170 | eqbrtrrd 5167 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
| 172 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 173 | 162 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑗 ∈ 𝑎 Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 174 | 10, 172, 153, 173 | gsummptcl 19985 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ (0[,]+∞)) |
| 175 | 9, 174 | sselid 3981 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈
ℝ*) |
| 176 | 71 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
| 177 | | xrlenlt 11326 |
. . . . . . . . . 10
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ℝ* ∧
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 178 | 175, 176,
177 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 179 | 171, 178 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 180 | | nfv 1914 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧𝜑 |
| 181 | | eqidd 2738 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 182 | 180, 68, 66, 47, 181 | esumval 34047 |
. . . . . . . . . 10
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 = sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 183 | 182 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 = sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 184 | 183 | breq1d 5153 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ↔ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 185 | 179, 184 | mtbid 324 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 186 | 185 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 187 | 186 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 188 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 189 | 188 | breq2d 5155 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠 ↔ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 190 | 189 | notbid 318 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠 ↔ ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 191 | 187, 190 | mpbird 257 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠) |
| 192 | | eqid 2737 |
. . . . . . 7
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 193 | | ovex 7464 |
. . . . . . 7
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V |
| 194 | 192, 193 | elrnmpti 5973 |
. . . . . 6
⊢ (𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 195 | 194 | biimpi 216 |
. . . . 5
⊢ (𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 196 | 195 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 197 | 141, 191,
196 | r19.29af 3268 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠) |
| 198 | 4 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 ∈
ℝ* |
| 199 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑐
< |
| 200 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐ℝ* |
| 201 | 6, 200, 199 | nfsup 9491 |
. . . . . . . . . 10
⊢
Ⅎ𝑐sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
) |
| 202 | 4, 199, 201 | nfbr 5190 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
) |
| 203 | 198, 202 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑐(𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 204 | 3, 203 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑐(𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
))) |
| 205 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑐𝑢 |
| 206 | 205, 6 | nfel 2920 |
. . . . . . 7
⊢
Ⅎ𝑐 𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 207 | 204, 206 | nfan 1899 |
. . . . . 6
⊢
Ⅎ𝑐((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
| 208 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑐 𝑠 < 𝑢 |
| 209 | 207, 208 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑐(((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) |
| 210 | | simp-5l 785 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝜑) |
| 211 | | simpr1l 1231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))))) → 𝑠 ∈ ℝ*) |
| 212 | 211 | 3anassrs 1361 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 ∈ ℝ*) |
| 213 | 212 | 3anassrs 1361 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ℝ*) |
| 214 | 210, 213 | jca 511 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → (𝜑 ∧ 𝑠 ∈
ℝ*)) |
| 215 | | simpr1r 1232 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 216 | 215 | 3anassrs 1361 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 217 | 216 | 3anassrs 1361 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 218 | 214, 217 | jca 511 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
))) |
| 219 | | simpllr 776 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 < 𝑢) |
| 220 | | simpr 484 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 221 | 219, 220 | breqtrd 5169 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 222 | | simplr 769 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 223 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 224 | 223 | elin1d 4204 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 225 | | elpwi 4607 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 226 | | dmss 5913 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ dom ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 227 | | dmiun 5924 |
. . . . . . . . . . . . . 14
⊢ dom
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) |
| 228 | 226, 227 | sseqtrdi 4024 |
. . . . . . . . . . . . 13
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵)) |
| 229 | | dmxpss 6191 |
. . . . . . . . . . . . . . . . 17
⊢ dom
({𝑗} × 𝐵) ⊆ {𝑗} |
| 230 | 229 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐴 → dom ({𝑗} × 𝐵) ⊆ {𝑗}) |
| 231 | | snssi 4808 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐴 → {𝑗} ⊆ 𝐴) |
| 232 | 230, 231 | sstrd 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝐴 → dom ({𝑗} × 𝐵) ⊆ 𝐴) |
| 233 | 232 | rgen 3063 |
. . . . . . . . . . . . . 14
⊢
∀𝑗 ∈
𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 |
| 234 | | iunss 5045 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 ↔ ∀𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴) |
| 235 | 233, 234 | mpbir 231 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 |
| 236 | 228, 235 | sstrdi 3996 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ 𝐴) |
| 237 | 18 | dmex 7931 |
. . . . . . . . . . . . 13
⊢ dom 𝑐 ∈ V |
| 238 | 237 | elpw 4604 |
. . . . . . . . . . . 12
⊢ (dom
𝑐 ∈ 𝒫 𝐴 ↔ dom 𝑐 ⊆ 𝐴) |
| 239 | 236, 238 | sylibr 234 |
. . . . . . . . . . 11
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ∈ 𝒫 𝐴) |
| 240 | 224, 225,
239 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ 𝒫 𝐴) |
| 241 | 223 | elin2d 4205 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ Fin) |
| 242 | | dmfi 9375 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ Fin → dom 𝑐 ∈ Fin) |
| 243 | 241, 242 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ Fin) |
| 244 | 240, 243 | elind 4200 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ (𝒫 𝐴 ∩ Fin)) |
| 245 | | ovex 7464 |
. . . . . . . . . 10
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V |
| 246 | 245 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V) |
| 247 | | mpteq1 5235 |
. . . . . . . . . . 11
⊢ (𝑎 = dom 𝑐 → (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶) = (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) |
| 248 | 247 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑐 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 249 | 192, 248 | elrnmpt1s 5970 |
. . . . . . . . 9
⊢ ((dom
𝑐 ∈ (𝒫 𝐴 ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 250 | 244, 246,
249 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 251 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 252 | 251 | breq2d 5155 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (𝑠 < 𝑡 ↔ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
| 253 | | simpllr 776 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 ∈ ℝ*) |
| 254 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
| 255 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(ℝ*𝑠
↾s (0[,]+∞)) |
| 256 | | nfcv 2905 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧
Σg |
| 257 | | nfmpt1 5250 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(𝑧 ∈ 𝑐 ↦ 𝐹) |
| 258 | 255, 256,
257 | nfov 7461 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) |
| 259 | 110, 111,
258 | nfbr 5190 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) |
| 260 | 109, 259 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 261 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
| 262 | 260, 261 | nfan 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 263 | | simp-4l 783 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝜑) |
| 264 | 224, 225 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 265 | 264 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 266 | 263, 265,
47 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝐹 ∈ (0[,]+∞)) |
| 267 | 266 | ex 412 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑧 ∈ 𝑐 → 𝐹 ∈ (0[,]+∞))) |
| 268 | 262, 267 | ralrimi 3257 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑧 ∈ 𝑐 𝐹 ∈ (0[,]+∞)) |
| 269 | 10, 254, 241, 268 | gsummptcl 19985 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ (0[,]+∞)) |
| 270 | 9, 269 | sselid 3981 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
| 271 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 272 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝑐 |
| 273 | 25 | nfpw 4619 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝒫 ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
| 274 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗Fin |
| 275 | 273, 274 | nfin 4224 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
| 276 | 272, 275 | nfel 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
| 277 | 271, 276 | nfan 1899 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 278 | | simpll 767 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝜑) |
| 279 | 79, 236 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ⊆ 𝐴) |
| 280 | 279 | sselda 3983 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑗 ∈ 𝐴) |
| 281 | 278, 280,
161 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 282 | 281 | adantllr 719 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 283 | 282 | adantllr 719 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 284 | 283 | ex 412 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑗 ∈ dom 𝑐 → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞))) |
| 285 | 277, 284 | ralrimi 3257 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑗 ∈ dom 𝑐Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
| 286 | 10, 254, 243, 285 | gsummptcl 19985 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ (0[,]+∞)) |
| 287 | 9, 286 | sselid 3981 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈
ℝ*) |
| 288 | | simplr 769 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 289 | 23, 276 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
| 290 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 291 | | xpss 5701 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑗} × 𝐵) ⊆ (V × V) |
| 292 | 291 | rgenw 3065 |
. . . . . . . . . . . . . . . . . 18
⊢
∀𝑗 ∈
𝐴 ({𝑗} × 𝐵) ⊆ (V × V) |
| 293 | | iunss 5045 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V) ↔ ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V)) |
| 294 | 292, 293 | mpbir 231 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V) |
| 295 | 294 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V)) |
| 296 | 290, 295 | sstrd 3994 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ (V × V)) |
| 297 | 79, 296 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ (V × V)) |
| 298 | | df-rel 5692 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝑐 ↔ 𝑐 ⊆ (V × V)) |
| 299 | 297, 298 | sylibr 234 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → Rel 𝑐) |
| 300 | 29, 289, 10, 32, 299, 14, 12, 48 | gsummpt2d 33052 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
| 301 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗dom
𝑐 |
| 302 | 237 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ V) |
| 303 | 278 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝜑) |
| 304 | 280 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝑗 ∈ 𝐴) |
| 305 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
| 306 | | imass1 6119 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → (𝑐 “ {𝑗}) ⊆ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗})) |
| 307 | 305, 306 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ⊆ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗})) |
| 308 | 59, 61 | iunsnima 32630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗}) = 𝐵) |
| 309 | 278, 280,
308 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗}) = 𝐵) |
| 310 | 307, 309 | sseqtrd 4020 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ⊆ 𝐵) |
| 311 | 310 | sselda 3983 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝑘 ∈ 𝐵) |
| 312 | 303, 304,
311, 37 | syl12anc 837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝐶 ∈ (0[,]+∞)) |
| 313 | 312 | ralrimiva 3146 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → ∀𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
| 314 | | imaexg 7935 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ V → (𝑐 “ {𝑗}) ∈ V) |
| 315 | 18, 314 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 “ {𝑗}) ∈ V |
| 316 | | nfcv 2905 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑐 “ {𝑗}) |
| 317 | 316 | esumcl 34031 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐 “ {𝑗}) ∈ V ∧ ∀𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
| 318 | 315, 317 | mpan 690 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞) →
Σ*𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
| 319 | 313, 318 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
| 320 | | nfv 1914 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) |
| 321 | 278, 280,
61 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝐵 ∈ 𝑊) |
| 322 | 278 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝜑) |
| 323 | 280 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝑗 ∈ 𝐴) |
| 324 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
| 325 | 322, 323,
324, 37 | syl12anc 837 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
| 326 | 320, 321,
325, 310 | esummono 34055 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ≤ Σ*𝑘 ∈ 𝐵𝐶) |
| 327 | 289, 301,
302, 319, 281, 326 | esumlef 34063 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ≤ Σ*𝑗 ∈ dom 𝑐Σ*𝑘 ∈ 𝐵𝐶) |
| 328 | 14, 242 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ Fin) |
| 329 | 289, 301,
328, 319 | esumgsum 34046 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶))) |
| 330 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑐 ∈ Fin) |
| 331 | | imafi2 32723 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ Fin → (𝑐 “ {𝑗}) ∈ Fin) |
| 332 | 330, 331 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ∈ Fin) |
| 333 | 320, 316,
332, 312 | esumgsum 34046 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))) |
| 334 | 289, 333 | mpteq2da 5240 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶) = (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶)))) |
| 335 | 334 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
| 336 | 329, 335 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
| 337 | 289, 301,
328, 281 | esumgsum 34046 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ 𝐵𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 338 | 327, 336,
337 | 3brtr3d 5174 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶)))) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 339 | 300, 338 | eqbrtrd 5165 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 340 | 339 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 341 | 340 | adantlr 715 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 342 | 253, 270,
287, 288, 341 | xrltletrd 13203 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 343 | 250, 252,
342 | rspcedvd 3624 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
| 344 | 343 | adantllr 719 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
| 345 | 218, 221,
222, 344 | syl21anc 838 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
| 346 | 53, 89 | elrnmpti 5973 |
. . . . . . 7
⊢ (𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ↔ ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 347 | 346 | biimpi 216 |
. . . . . 6
⊢ (𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 348 | 347 | ad2antlr 727 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
| 349 | 209, 345,
348 | r19.29af 3268 |
. . . 4
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
| 350 | 2, 134 | suplub 9500 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) →
∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
| 351 | 350 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
| 352 | | breq2 5147 |
. . . . . 6
⊢ (𝑡 = 𝑢 → (𝑠 < 𝑡 ↔ 𝑠 < 𝑢)) |
| 353 | 352 | cbvrexvw 3238 |
. . . . 5
⊢
(∃𝑡 ∈ ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡 ↔ ∃𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑢) |
| 354 | 351, 353 | sylib 218 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑢) |
| 355 | 349, 354 | r19.29a 3162 |
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
| 356 | 2, 135, 197, 355 | eqsupd 9497 |
. 2
⊢ (𝜑 → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))), ℝ*, < ) = sup(ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
| 357 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑗𝐴 |
| 358 | | eqidd 2738 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
| 359 | 23, 357, 59, 161, 358 | esumval 34047 |
. 2
⊢ (𝜑 → Σ*𝑗 ∈ 𝐴Σ*𝑘 ∈ 𝐵𝐶 = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))), ℝ*, <
)) |
| 360 | 356, 359,
182 | 3eqtr4d 2787 |
1
⊢ (𝜑 → Σ*𝑗 ∈ 𝐴Σ*𝑘 ∈ 𝐵𝐶 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |