Step | Hyp | Ref
| Expression |
1 | | xrltso 12804 |
. . . 4
⊢ < Or
ℝ* |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → < Or
ℝ*) |
3 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑐𝜑 |
4 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑐𝑠 |
5 | | nfmpt1 5178 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐(𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
6 | 5 | nfrn 5850 |
. . . . . . . . . 10
⊢
Ⅎ𝑐ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
7 | 4, 6 | nfel 2920 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
8 | 3, 7 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑐(𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
9 | | iccssxr 13091 |
. . . . . . . . . . . . . 14
⊢
(0[,]+∞) ⊆ ℝ* |
10 | | xrge0base 31196 |
. . . . . . . . . . . . . . 15
⊢
(0[,]+∞) = (Base‘(ℝ*𝑠
↾s (0[,]+∞))) |
11 | | xrge0cmn 20552 |
. . . . . . . . . . . . . . . 16
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
12 | 11 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
13 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
14 | 13 | elin2d 4129 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ Fin) |
15 | | simpll 763 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝜑) |
16 | 13 | elin1d 4128 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
18 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑐 ∈ V |
19 | 18 | elpw 4534 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
20 | 17, 19 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
21 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ 𝑐) |
22 | 20, 21 | sseldd 3918 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
23 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗𝜑 |
24 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗𝑧 |
25 | | nfiu1 4955 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
26 | 24, 25 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
27 | 23, 26 | nfan 1903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗(𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
28 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘(((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) |
29 | | esum2d.0 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘𝐹 |
30 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(0[,]+∞) |
31 | 29, 30 | nfel 2920 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘 𝐹 ∈
(0[,]+∞) |
32 | | esum2d.1 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐹 = 𝐶) |
33 | 32 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐹 = 𝐶) |
34 | | simp-5l 781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝜑) |
35 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝑗 ∈ 𝐴) |
36 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝑘 ∈ 𝐵) |
37 | | esum2d.4 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
38 | 34, 35, 36, 37 | syl12anc 833 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐶 ∈ (0[,]+∞)) |
39 | 33, 38 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) ∧ 𝑘 ∈ 𝐵) ∧ 𝑧 = 〈𝑗, 𝑘〉) → 𝐹 ∈ (0[,]+∞)) |
40 | | elsnxp 6183 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ 𝐴 → (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉)) |
41 | 40 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ 𝐴 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
42 | 41 | adantll 710 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → ∃𝑘 ∈ 𝐵 𝑧 = 〈𝑗, 𝑘〉) |
43 | 28, 31, 39, 42 | r19.29af2 3258 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) ∧ 𝑗 ∈ 𝐴) ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
44 | | simpr 484 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
45 | | eliun 4925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝐴 𝑧 ∈ ({𝑗} × 𝐵)) |
46 | 44, 45 | sylib 217 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → ∃𝑗 ∈ 𝐴 𝑧 ∈ ({𝑗} × 𝐵)) |
47 | 27, 43, 46 | r19.29af 3259 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
48 | 15, 22, 47 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝐹 ∈ (0[,]+∞)) |
49 | 48 | ralrimiva 3107 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑧 ∈ 𝑐 𝐹 ∈ (0[,]+∞)) |
50 | 10, 12, 14, 49 | gsummptcl 19483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ (0[,]+∞)) |
51 | 9, 50 | sselid 3915 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
52 | 51 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
53 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) = (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
54 | 53 | rnmptss 6978 |
. . . . . . . . . . . 12
⊢
(∀𝑐 ∈
(𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ℝ* → ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
55 | 52, 54 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
56 | 55 | ad3antrrr 726 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ⊆
ℝ*) |
57 | | simpllr 772 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
58 | 56, 57 | sseldd 3918 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ℝ*) |
59 | | esum2d.2 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
60 | | snex 5349 |
. . . . . . . . . . . . . . 15
⊢ {𝑗} ∈ V |
61 | | esum2d.3 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
62 | | xpexg 7578 |
. . . . . . . . . . . . . . 15
⊢ (({𝑗} ∈ V ∧ 𝐵 ∈ 𝑊) → ({𝑗} × 𝐵) ∈ V) |
63 | 60, 61, 62 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ({𝑗} × 𝐵) ∈ V) |
64 | 63 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
65 | | iunexg 7779 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
66 | 59, 64, 65 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
67 | 47 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
68 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
69 | 68 | esumcl 31898 |
. . . . . . . . . . . 12
⊢
((∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V ∧ ∀𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) →
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
70 | 66, 67, 69 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ (0[,]+∞)) |
71 | 9, 70 | sselid 3915 |
. . . . . . . . . 10
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
72 | 71 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
73 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
74 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧(𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
75 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧𝑐 |
76 | 74, 75, 14, 48 | esumgsum 31913 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
77 | 66 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
78 | 47 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
79 | 16, 19 | sylib 217 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
80 | 74, 77, 78, 79 | esummono 31922 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
81 | 76, 80 | eqbrtrrd 5094 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
82 | 81 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
83 | 82 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
84 | 73, 83 | eqbrtrd 5092 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
85 | | xrlenlt 10971 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ ℝ*
∧ Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) → (𝑠 ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
86 | 85 | biimpa 476 |
. . . . . . . . 9
⊢ (((𝑠 ∈ ℝ*
∧ Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) ∧ 𝑠 ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
87 | 58, 72, 84, 86 | syl21anc 834 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
88 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
89 | | ovex 7288 |
. . . . . . . . . 10
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V |
90 | 53, 89 | elrnmpti 5858 |
. . . . . . . . 9
⊢ (𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ↔ ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
91 | 88, 90 | sylib 217 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
92 | 8, 87, 91 | r19.29af 3259 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
93 | 92 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠) |
94 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑐((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
95 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑐 𝑠 < 𝑡 |
96 | 6, 95 | nfrex 3237 |
. . . . . . . . 9
⊢
Ⅎ𝑐∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡 |
97 | 76 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
98 | 97 | adantlr 711 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑧 ∈
𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
99 | 98 | adantr 480 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → Σ*𝑧 ∈ 𝑐𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
100 | | simplr 765 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
101 | 89 | a1i 11 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V) |
102 | 53 | elrnmpt1 5856 |
. . . . . . . . . . . 12
⊢ ((𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ V) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
103 | 100, 101,
102 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
104 | 99, 103 | eqeltrd 2839 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → Σ*𝑧 ∈ 𝑐𝐹 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
105 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) ∧ 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) → 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) |
106 | 105 | breq2d 5082 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) ∧ 𝑡 = Σ*𝑧 ∈ 𝑐𝐹) → (𝑠 < 𝑡 ↔ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹)) |
107 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) |
108 | 104, 106,
107 | rspcedvd 3555 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑠 < Σ*𝑧 ∈ 𝑐𝐹) → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
109 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝜑 ∧ 𝑠 ∈ ℝ*) |
110 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧𝑠 |
111 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧
< |
112 | 68 | nfesum1 31908 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 |
113 | 110, 111,
112 | nfbr 5117 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 |
114 | 109, 113 | nfan 1903 |
. . . . . . . . . 10
⊢
Ⅎ𝑧((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
115 | 66 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
116 | 47 | 3ad2antr3 1188 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵))) → 𝐹 ∈ (0[,]+∞)) |
117 | 116 | 3anassrs 1358 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
118 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑠 ∈ ℝ*) |
119 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
120 | 114, 115,
117, 118, 119 | esumlub 31928 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑠 < Σ*𝑧 ∈ 𝑐𝐹) |
121 | 94, 96, 108, 120 | r19.29af2 3258 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
122 | 121 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ*) → (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
123 | 122 | ralrimiva 3107 |
. . . . . 6
⊢ (𝜑 → ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
124 | 93, 123 | jca 511 |
. . . . 5
⊢ (𝜑 → (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
125 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
126 | 125 | breq1d 5080 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (𝑟 < 𝑠 ↔ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
127 | 126 | notbid 317 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (¬ 𝑟 < 𝑠 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
128 | 127 | ralbidv 3120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ↔ ∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠)) |
129 | 125 | breq2d 5082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (𝑠 < 𝑟 ↔ 𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹)) |
130 | 129 | imbi1d 341 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ((𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) ↔ (𝑠 < Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
131 | 130 | ralbidv 3120 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → (∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) ↔ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
132 | 128, 131 | anbi12d 630 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) → ((∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) ↔ (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)))) |
133 | 71, 132 | rspcedv 3544 |
. . . . 5
⊢ (𝜑 → ((∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) → ∃𝑟 ∈ ℝ* (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)))) |
134 | 124, 133 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑟 ∈ ℝ* (∀𝑠 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ¬ 𝑟 < 𝑠 ∧ ∀𝑠 ∈ ℝ* (𝑠 < 𝑟 → ∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡))) |
135 | 2, 134 | supcl 9147 |
. . 3
⊢ (𝜑 → sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) ∈
ℝ*) |
136 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑎𝜑 |
137 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑎𝑠 |
138 | | nfmpt1 5178 |
. . . . . . 7
⊢
Ⅎ𝑎(𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
139 | 138 | nfrn 5850 |
. . . . . 6
⊢
Ⅎ𝑎ran
(𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
140 | 137, 139 | nfel 2920 |
. . . . 5
⊢
Ⅎ𝑎 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
141 | 136, 140 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑎(𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
142 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
143 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝜑) |
144 | 142 | elin1d 4128 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ 𝒫 𝐴) |
145 | | elpwi 4539 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴) |
146 | 144, 145 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ 𝐴) |
147 | 146 | sselda 3917 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝑗 ∈ 𝐴) |
148 | 143, 147,
61 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → 𝐵 ∈ 𝑊) |
149 | 143 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝜑) |
150 | 147 | adantrr 713 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝑗 ∈ 𝐴) |
151 | | simprr 769 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝑘 ∈ 𝐵) |
152 | 149, 150,
151, 37 | syl12anc 833 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ (0[,]+∞)) |
153 | 142 | elin2d 4129 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin) |
154 | 29, 32, 142, 148, 152, 153 | esum2dlem 31960 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑗 ∈ 𝑎Σ*𝑘 ∈ 𝐵𝐶 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹) |
155 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
156 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝑎 |
157 | 37 | anassrs 467 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
158 | 157 | ralrimiva 3107 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → ∀𝑘 ∈ 𝐵 𝐶 ∈ (0[,]+∞)) |
159 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝐵 |
160 | 159 | esumcl 31898 |
. . . . . . . . . . . . . 14
⊢ ((𝐵 ∈ 𝑊 ∧ ∀𝑘 ∈ 𝐵 𝐶 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
𝐵𝐶 ∈ (0[,]+∞)) |
161 | 61, 158, 160 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
162 | 143, 147,
161 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑗 ∈ 𝑎) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
163 | 155, 156,
153, 162 | esumgsum 31913 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑗 ∈ 𝑎Σ*𝑘 ∈ 𝐵𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
164 | 154, 163 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
165 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
166 | 66 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∈ V) |
167 | 47 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) → 𝐹 ∈ (0[,]+∞)) |
168 | | iunss1 4935 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → ∪
𝑗 ∈ 𝑎 ({𝑗} × 𝐵) ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
169 | 146, 168 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵) ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
170 | 165, 166,
167, 169 | esummono 31922 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ({𝑗} × 𝐵)𝐹 ≤ Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
171 | 164, 170 | eqbrtrrd 5094 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |
172 | 11 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
173 | 162 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑗 ∈ 𝑎 Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
174 | 10, 172, 153, 173 | gsummptcl 19483 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ (0[,]+∞)) |
175 | 9, 174 | sselid 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈
ℝ*) |
176 | 71 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈
ℝ*) |
177 | | xrlenlt 10971 |
. . . . . . . . . 10
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ℝ* ∧
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ∈ ℝ*) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
178 | 175, 176,
177 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ≤ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 ↔ ¬ Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
179 | 171, 178 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬
Σ*𝑧 ∈
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
180 | | nfv 1918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧𝜑 |
181 | | eqidd 2739 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
182 | 180, 68, 66, 47, 181 | esumval 31914 |
. . . . . . . . . 10
⊢ (𝜑 → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 = sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
183 | 182 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → Σ*𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 = sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
184 | 183 | breq1d 5080 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(Σ*𝑧
∈ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ↔ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
185 | 179, 184 | mtbid 323 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
186 | 185 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
187 | 186 | adantr 480 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
188 | | simpr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
189 | 188 | breq2d 5082 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠 ↔ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
190 | 189 | notbid 317 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠 ↔ ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
191 | 187, 190 | mpbird 256 |
. . . 4
⊢ ((((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠) |
192 | | eqid 2738 |
. . . . . . 7
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
193 | | ovex 7288 |
. . . . . . 7
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V |
194 | 192, 193 | elrnmpti 5858 |
. . . . . 6
⊢ (𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
195 | 194 | biimpi 215 |
. . . . 5
⊢ (𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
196 | 195 | adantl 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑠 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
197 | 141, 191,
196 | r19.29af 3259 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) → ¬ sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ) < 𝑠) |
198 | 4 | nfel1 2922 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 ∈
ℝ* |
199 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑐
< |
200 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑐ℝ* |
201 | 6, 200, 199 | nfsup 9140 |
. . . . . . . . . 10
⊢
Ⅎ𝑐sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
) |
202 | 4, 199, 201 | nfbr 5117 |
. . . . . . . . 9
⊢
Ⅎ𝑐 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
) |
203 | 198, 202 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑐(𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
204 | 3, 203 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑐(𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
))) |
205 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑐𝑢 |
206 | 205, 6 | nfel 2920 |
. . . . . . 7
⊢
Ⅎ𝑐 𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
207 | 204, 206 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑐((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) |
208 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑐 𝑠 < 𝑢 |
209 | 207, 208 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑐(((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) |
210 | | simp-5l 781 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝜑) |
211 | | simpr1l 1228 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))))) → 𝑠 ∈ ℝ*) |
212 | 211 | 3anassrs 1358 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 ∈ ℝ*) |
213 | 212 | 3anassrs 1358 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 ∈ ℝ*) |
214 | 210, 213 | jca 511 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → (𝜑 ∧ 𝑠 ∈
ℝ*)) |
215 | | simpr1r 1229 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
216 | 215 | 3anassrs 1358 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ (𝑠 < 𝑢 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
217 | 216 | 3anassrs 1358 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
218 | 214, 217 | jca 511 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
))) |
219 | | simpllr 772 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 < 𝑢) |
220 | | simpr 484 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
221 | 219, 220 | breqtrd 5096 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
222 | | simplr 765 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
223 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
224 | 223 | elin1d 4128 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
225 | | elpwi 4539 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
226 | | dmss 5800 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ dom ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
227 | | dmiun 5811 |
. . . . . . . . . . . . . 14
⊢ dom
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) = ∪
𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) |
228 | 226, 227 | sseqtrdi 3967 |
. . . . . . . . . . . . 13
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵)) |
229 | | dmxpss 6063 |
. . . . . . . . . . . . . . . . 17
⊢ dom
({𝑗} × 𝐵) ⊆ {𝑗} |
230 | 229 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐴 → dom ({𝑗} × 𝐵) ⊆ {𝑗}) |
231 | | snssi 4738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ 𝐴 → {𝑗} ⊆ 𝐴) |
232 | 230, 231 | sstrd 3927 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ 𝐴 → dom ({𝑗} × 𝐵) ⊆ 𝐴) |
233 | 232 | rgen 3073 |
. . . . . . . . . . . . . 14
⊢
∀𝑗 ∈
𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 |
234 | | iunss 4971 |
. . . . . . . . . . . . . 14
⊢ (∪ 𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 ↔ ∀𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴) |
235 | 233, 234 | mpbir 230 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑗 ∈ 𝐴 dom ({𝑗} × 𝐵) ⊆ 𝐴 |
236 | 228, 235 | sstrdi 3929 |
. . . . . . . . . . . 12
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ⊆ 𝐴) |
237 | 18 | dmex 7732 |
. . . . . . . . . . . . 13
⊢ dom 𝑐 ∈ V |
238 | 237 | elpw 4534 |
. . . . . . . . . . . 12
⊢ (dom
𝑐 ∈ 𝒫 𝐴 ↔ dom 𝑐 ⊆ 𝐴) |
239 | 236, 238 | sylibr 233 |
. . . . . . . . . . 11
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → dom 𝑐 ∈ 𝒫 𝐴) |
240 | 224, 225,
239 | 3syl 18 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ 𝒫 𝐴) |
241 | 223 | elin2d 4129 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ∈ Fin) |
242 | | dmfi 9027 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ Fin → dom 𝑐 ∈ Fin) |
243 | 241, 242 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ Fin) |
244 | 240, 243 | elind 4124 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ (𝒫 𝐴 ∩ Fin)) |
245 | | ovex 7288 |
. . . . . . . . . 10
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V |
246 | 245 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V) |
247 | | mpteq1 5163 |
. . . . . . . . . . 11
⊢ (𝑎 = dom 𝑐 → (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶) = (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) |
248 | 247 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑎 = dom 𝑐 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
249 | 192, 248 | elrnmpt1s 5855 |
. . . . . . . . 9
⊢ ((dom
𝑐 ∈ (𝒫 𝐴 ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ V) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
250 | 244, 246,
249 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
251 | | simpr 484 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
252 | 251 | breq2d 5082 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑡 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) → (𝑠 < 𝑡 ↔ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)))) |
253 | | simpllr 772 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 ∈ ℝ*) |
254 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
255 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(ℝ*𝑠
↾s (0[,]+∞)) |
256 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧
Σg |
257 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑧(𝑧 ∈ 𝑐 ↦ 𝐹) |
258 | 255, 256,
257 | nfov 7285 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑧((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) |
259 | 110, 111,
258 | nfbr 5117 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑧 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) |
260 | 109, 259 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
261 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑧 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
262 | 260, 261 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑧(((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
263 | | simp-4l 779 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝜑) |
264 | 224, 225 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
265 | 264 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
266 | 263, 265,
47 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑧 ∈ 𝑐) → 𝐹 ∈ (0[,]+∞)) |
267 | 266 | ex 412 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑧 ∈ 𝑐 → 𝐹 ∈ (0[,]+∞))) |
268 | 262, 267 | ralrimi 3139 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑧 ∈ 𝑐 𝐹 ∈ (0[,]+∞)) |
269 | 10, 254, 241, 268 | gsummptcl 19483 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈ (0[,]+∞)) |
270 | 9, 269 | sselid 3915 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ∈
ℝ*) |
271 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
272 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗𝑐 |
273 | 25 | nfpw 4551 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗𝒫 ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) |
274 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗Fin |
275 | 273, 274 | nfin 4147 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
276 | 272, 275 | nfel 2920 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) |
277 | 271, 276 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
278 | | simpll 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝜑) |
279 | 79, 236 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ⊆ 𝐴) |
280 | 279 | sselda 3917 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑗 ∈ 𝐴) |
281 | 278, 280,
161 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
282 | 281 | adantllr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
283 | 282 | adantllr 715 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
284 | 283 | ex 412 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑗 ∈ dom 𝑐 → Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞))) |
285 | 277, 284 | ralrimi 3139 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∀𝑗 ∈ dom 𝑐Σ*𝑘 ∈ 𝐵𝐶 ∈ (0[,]+∞)) |
286 | 10, 254, 243, 285 | gsummptcl 19483 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈ (0[,]+∞)) |
287 | 9, 286 | sselid 3915 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶)) ∈
ℝ*) |
288 | | simplr 765 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
289 | 23, 276 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) |
290 | | id 22 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
291 | | xpss 5596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑗} × 𝐵) ⊆ (V × V) |
292 | 291 | rgenw 3075 |
. . . . . . . . . . . . . . . . . 18
⊢
∀𝑗 ∈
𝐴 ({𝑗} × 𝐵) ⊆ (V × V) |
293 | | iunss 4971 |
. . . . . . . . . . . . . . . . . 18
⊢ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V) ↔ ∀𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V)) |
294 | 292, 293 | mpbir 230 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V) |
295 | 294 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ⊆ (V × V)) |
296 | 290, 295 | sstrd 3927 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → 𝑐 ⊆ (V × V)) |
297 | 79, 296 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑐 ⊆ (V × V)) |
298 | | df-rel 5587 |
. . . . . . . . . . . . . 14
⊢ (Rel
𝑐 ↔ 𝑐 ⊆ (V × V)) |
299 | 297, 298 | sylibr 233 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → Rel 𝑐) |
300 | 29, 289, 10, 32, 299, 14, 12, 48 | gsummpt2d 31211 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
301 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗dom
𝑐 |
302 | 237 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ V) |
303 | 278 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝜑) |
304 | 280 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝑗 ∈ 𝐴) |
305 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑐 ⊆ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)) |
306 | | imass1 5998 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) → (𝑐 “ {𝑗}) ⊆ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗})) |
307 | 305, 306 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ⊆ (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗})) |
308 | 59, 61 | iunsnima 30859 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗}) = 𝐵) |
309 | 278, 280,
308 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵) “ {𝑗}) = 𝐵) |
310 | 307, 309 | sseqtrd 3957 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ⊆ 𝐵) |
311 | 310 | sselda 3917 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝑘 ∈ 𝐵) |
312 | 303, 304,
311, 37 | syl12anc 833 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ (𝑐 “ {𝑗})) → 𝐶 ∈ (0[,]+∞)) |
313 | 312 | ralrimiva 3107 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → ∀𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
314 | | imaexg 7736 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ V → (𝑐 “ {𝑗}) ∈ V) |
315 | 18, 314 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 “ {𝑗}) ∈ V |
316 | | nfcv 2906 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝑐 “ {𝑗}) |
317 | 316 | esumcl 31898 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑐 “ {𝑗}) ∈ V ∧ ∀𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) →
Σ*𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
318 | 315, 317 | mpan 686 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞) →
Σ*𝑘 ∈
(𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
319 | 313, 318 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ∈ (0[,]+∞)) |
320 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) |
321 | 278, 280,
61 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝐵 ∈ 𝑊) |
322 | 278 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝜑) |
323 | 280 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝑗 ∈ 𝐴) |
324 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝑘 ∈ 𝐵) |
325 | 322, 323,
324, 37 | syl12anc 833 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) |
326 | 320, 321,
325, 310 | esummono 31922 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ≤ Σ*𝑘 ∈ 𝐵𝐶) |
327 | 289, 301,
302, 319, 281, 326 | esumlef 31930 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 ≤ Σ*𝑗 ∈ dom 𝑐Σ*𝑘 ∈ 𝐵𝐶) |
328 | 14, 242 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → dom 𝑐 ∈ Fin) |
329 | 289, 301,
328, 319 | esumgsum 31913 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶))) |
330 | 14 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → 𝑐 ∈ Fin) |
331 | | imafi2 30948 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐 ∈ Fin → (𝑐 “ {𝑗}) ∈ Fin) |
332 | 330, 331 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → (𝑐 “ {𝑗}) ∈ Fin) |
333 | 320, 316,
332, 312 | esumgsum 31913 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑗 ∈ dom 𝑐) → Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))) |
334 | 289, 333 | mpteq2da 5168 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶) = (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶)))) |
335 | 334 | oveq2d 7271 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
336 | 329, 335 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ (𝑐 “ {𝑗})𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶))))) |
337 | 289, 301,
328, 281 | esumgsum 31913 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
Σ*𝑗 ∈
dom 𝑐Σ*𝑘 ∈ 𝐵𝐶 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
338 | 327, 336,
337 | 3brtr3d 5101 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝑐 “ {𝑗}) ↦ 𝐶)))) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
339 | 300, 338 | eqbrtrd 5092 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
340 | 339 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
341 | 340 | adantlr 711 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
342 | 253, 270,
287, 288, 341 | xrltletrd 12824 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ dom 𝑐 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
343 | 250, 252,
342 | rspcedvd 3555 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑠 ∈ ℝ*) ∧ 𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
344 | 343 | adantllr 715 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑠 ∈ ℝ*)
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) ∧
𝑠 <
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
345 | 218, 221,
222, 344 | syl21anc 834 |
. . . . 5
⊢
((((((𝜑 ∧ (𝑠 ∈ ℝ*
∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) ∧ 𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)) ∧ 𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
346 | 53, 89 | elrnmpti 5858 |
. . . . . . 7
⊢ (𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) ↔ ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
347 | 346 | biimpi 215 |
. . . . . 6
⊢ (𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
348 | 347 | ad2antlr 723 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) → ∃𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin)𝑢 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑧 ∈ 𝑐 ↦ 𝐹))) |
349 | 209, 345,
348 | r19.29af 3259 |
. . . 4
⊢ ((((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) ∧
𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))) ∧ 𝑠 < 𝑢) → ∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
350 | 2, 134 | suplub 9149 |
. . . . . 6
⊢ (𝜑 → ((𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < )) →
∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡)) |
351 | 350 | imp 406 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑡 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡) |
352 | | breq2 5074 |
. . . . . 6
⊢ (𝑡 = 𝑢 → (𝑠 < 𝑡 ↔ 𝑠 < 𝑢)) |
353 | 352 | cbvrexvw 3373 |
. . . . 5
⊢
(∃𝑡 ∈ ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑡 ↔ ∃𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑢) |
354 | 351, 353 | sylib 217 |
. . . 4
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑢 ∈ ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹)))𝑠 < 𝑢) |
355 | 349, 354 | r19.29a 3217 |
. . 3
⊢ ((𝜑 ∧ (𝑠 ∈ ℝ* ∧ 𝑠 < sup(ran (𝑐 ∈ (𝒫 ∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, < ))) →
∃𝑡 ∈ ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)))𝑠 < 𝑡) |
356 | 2, 135, 197, 355 | eqsupd 9146 |
. 2
⊢ (𝜑 → sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))), ℝ*, < ) = sup(ran
(𝑐 ∈ (𝒫
∪ 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑧 ∈ 𝑐 ↦ 𝐹))), ℝ*, <
)) |
357 | | nfcv 2906 |
. . 3
⊢
Ⅎ𝑗𝐴 |
358 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))) |
359 | 23, 357, 59, 161, 358 | esumval 31914 |
. 2
⊢ (𝜑 → Σ*𝑗 ∈ 𝐴Σ*𝑘 ∈ 𝐵𝐶 = sup(ran (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑗 ∈ 𝑎 ↦ Σ*𝑘 ∈ 𝐵𝐶))), ℝ*, <
)) |
360 | 356, 359,
182 | 3eqtr4d 2788 |
1
⊢ (𝜑 → Σ*𝑗 ∈ 𝐴Σ*𝑘 ∈ 𝐵𝐶 = Σ*𝑧 ∈ ∪
𝑗 ∈ 𝐴 ({𝑗} × 𝐵)𝐹) |