Step | Hyp | Ref
| Expression |
1 | | ldsysgenld.1 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
2 | | pwsiga 31998 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
4 | | isldsys.l |
. . . . . . . 8
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
5 | 4 | sigaldsys 32027 |
. . . . . . 7
⊢
(sigAlgebra‘𝑂)
⊆ 𝐿 |
6 | 5, 3 | sselid 3915 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝑂 ∈ 𝐿) |
7 | | ldsysgenld.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑂) |
8 | | sseq2 3943 |
. . . . . . 7
⊢ (𝑡 = 𝒫 𝑂 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝒫 𝑂)) |
9 | 8 | elrab 3617 |
. . . . . 6
⊢
(𝒫 𝑂 ∈
{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ (𝒫 𝑂 ∈ 𝐿 ∧ 𝐴 ⊆ 𝒫 𝑂)) |
10 | 6, 7, 9 | sylanbrc 582 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑂 ∈ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
11 | | intss1 4891 |
. . . . 5
⊢
(𝒫 𝑂 ∈
{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
13 | 3, 12 | sselpwd 5245 |
. . 3
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂) |
14 | 4 | isldsys 32024 |
. . . . . . . . . 10
⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
15 | 14 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
16 | 15 | simp1d 1140 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝐿 → ∅ ∈ 𝑡) |
17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ∅ ∈ 𝑡) |
18 | 17 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
19 | 18 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
20 | | 0ex 5226 |
. . . . . 6
⊢ ∅
∈ V |
21 | 20 | elintrab 4888 |
. . . . 5
⊢ (∅
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
22 | 19, 21 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
23 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑡𝜑 |
24 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
25 | | nfrab1 3310 |
. . . . . . . . . 10
⊢
Ⅎ𝑡{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
26 | 25 | nfint 4886 |
. . . . . . . . 9
⊢
Ⅎ𝑡∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
27 | 24, 26 | nfel 2920 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
28 | 23, 27 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
29 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
30 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
31 | 30 | elintrab 4888 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
32 | 31 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
33 | 32 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
34 | 33 | r19.21bi 3132 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
35 | 34 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝑡) |
36 | 15 | simp2d 1141 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
37 | 36 | r19.21bi 3132 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
38 | 29, 35, 37 | syl2anc 583 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
39 | 38 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡)) |
40 | 39 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → (𝑡 ∈ 𝐿 → (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
41 | 28, 40 | ralrimi 3139 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡)) |
42 | | difexg 5246 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ V) |
43 | | elintrabg 4889 |
. . . . . . . 8
⊢ ((𝑂 ∖ 𝑥) ∈ V → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
44 | 1, 42, 43 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
45 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
46 | 41, 45 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
47 | 46 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
48 | 26 | nfpw 4551 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡𝒫 ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
49 | 24, 48 | nfel 2920 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
50 | 23, 49 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
51 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) |
52 | 50, 51 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
53 | | simplr 765 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
54 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
55 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑡 ∈ 𝐿) |
56 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝐴 ⊆ 𝑡) |
57 | | vex 3426 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑢 ∈ V |
58 | 57 | elintrab 4888 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
59 | 58 | biimpi 215 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
60 | 59 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
61 | 60 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑢 ∈ 𝑡) |
62 | 54, 55, 56, 61 | syl21anc 834 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑢 ∈ 𝑡) |
63 | 62 | ex 412 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → 𝑢 ∈ 𝑡)) |
64 | 63 | ssrdv 3923 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝑡) |
65 | 64 | sspwd 4545 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑡) |
66 | | simp-4r 780 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
67 | 65, 66 | sseldd 3918 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝒫 𝑡) |
68 | | simpllr 772 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
69 | 15 | simp3d 1142 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
70 | 69 | r19.21bi 3132 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
71 | 70 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑡) |
72 | 53, 67, 68, 71 | syl21anc 834 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → ∪ 𝑥 ∈ 𝑡) |
73 | 72 | ex 412 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
74 | 73 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑡 ∈ 𝐿 → (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡))) |
75 | 52, 74 | ralrimi 3139 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
76 | | vuniex 7570 |
. . . . . . . 8
⊢ ∪ 𝑥
∈ V |
77 | 76 | elintrab 4888 |
. . . . . . 7
⊢ (∪ 𝑥
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
78 | 75, 77 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
79 | 78 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})) |
80 | 79 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})) |
81 | 22, 47, 80 | 3jca 1126 |
. . 3
⊢ (𝜑 → (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}))) |
82 | 13, 81 | jca 511 |
. 2
⊢ (𝜑 → (∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})))) |
83 | 4 | isldsys 32024 |
. 2
⊢ (∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝐿 ↔ (∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})))) |
84 | 82, 83 | sylibr 233 |
1
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝐿) |