| Step | Hyp | Ref
| Expression |
| 1 | | ldsysgenld.1 |
. . . . 5
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| 2 | | pwsiga 34132 |
. . . . 5
⊢ (𝑂 ∈ 𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
| 3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂)) |
| 4 | | isldsys.l |
. . . . . . . 8
⊢ 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑂 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑠))} |
| 5 | 4 | sigaldsys 34161 |
. . . . . . 7
⊢
(sigAlgebra‘𝑂)
⊆ 𝐿 |
| 6 | 5, 3 | sselid 3980 |
. . . . . 6
⊢ (𝜑 → 𝒫 𝑂 ∈ 𝐿) |
| 7 | | ldsysgenld.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ 𝒫 𝑂) |
| 8 | | sseq2 4009 |
. . . . . . 7
⊢ (𝑡 = 𝒫 𝑂 → (𝐴 ⊆ 𝑡 ↔ 𝐴 ⊆ 𝒫 𝑂)) |
| 9 | 8 | elrab 3691 |
. . . . . 6
⊢
(𝒫 𝑂 ∈
{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ (𝒫 𝑂 ∈ 𝐿 ∧ 𝐴 ⊆ 𝒫 𝑂)) |
| 10 | 6, 7, 9 | sylanbrc 583 |
. . . . 5
⊢ (𝜑 → 𝒫 𝑂 ∈ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 11 | | intss1 4962 |
. . . . 5
⊢
(𝒫 𝑂 ∈
{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑂) |
| 13 | 3, 12 | sselpwd 5327 |
. . 3
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂) |
| 14 | 4 | isldsys 34158 |
. . . . . . . . . 10
⊢ (𝑡 ∈ 𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)))) |
| 15 | 14 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑡 ∈ 𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡))) |
| 16 | 15 | simp1d 1142 |
. . . . . . . 8
⊢ (𝑡 ∈ 𝐿 → ∅ ∈ 𝑡) |
| 17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → ∅ ∈ 𝑡) |
| 18 | 17 | a1d 25 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
| 19 | 18 | ralrimiva 3145 |
. . . . 5
⊢ (𝜑 → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
| 20 | | 0ex 5306 |
. . . . . 6
⊢ ∅
∈ V |
| 21 | 20 | elintrab 4959 |
. . . . 5
⊢ (∅
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∅ ∈ 𝑡)) |
| 22 | 19, 21 | sylibr 234 |
. . . 4
⊢ (𝜑 → ∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 23 | | nfv 1913 |
. . . . . . . 8
⊢
Ⅎ𝑡𝜑 |
| 24 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑡𝑥 |
| 25 | | nfrab1 3456 |
. . . . . . . . . 10
⊢
Ⅎ𝑡{𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
| 26 | 25 | nfint 4955 |
. . . . . . . . 9
⊢
Ⅎ𝑡∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
| 27 | 24, 26 | nfel 2919 |
. . . . . . . 8
⊢
Ⅎ𝑡 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
| 28 | 23, 27 | nfan 1898 |
. . . . . . 7
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 29 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
| 30 | | vex 3483 |
. . . . . . . . . . . . . . 15
⊢ 𝑥 ∈ V |
| 31 | 30 | elintrab 4959 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
| 32 | 31 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
| 33 | 32 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
| 34 | 33 | r19.21bi 3250 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → 𝑥 ∈ 𝑡)) |
| 35 | 34 | imp 406 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝑡) |
| 36 | 15 | simp2d 1143 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝑡 (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 37 | 36 | r19.21bi 3250 |
. . . . . . . . . 10
⊢ ((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 38 | 29, 35, 37 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑂 ∖ 𝑥) ∈ 𝑡) |
| 39 | 38 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡)) |
| 40 | 39 | ex 412 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → (𝑡 ∈ 𝐿 → (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
| 41 | 28, 40 | ralrimi 3256 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡)) |
| 42 | | difexg 5328 |
. . . . . . . 8
⊢ (𝑂 ∈ 𝑉 → (𝑂 ∖ 𝑥) ∈ V) |
| 43 | | elintrabg 4960 |
. . . . . . . 8
⊢ ((𝑂 ∖ 𝑥) ∈ V → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
| 44 | 1, 42, 43 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
| 45 | 44 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ((𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → (𝑂 ∖ 𝑥) ∈ 𝑡))) |
| 46 | 41, 45 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 47 | 46 | ralrimiva 3145 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 48 | 26 | nfpw 4618 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡𝒫 ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
| 49 | 24, 48 | nfel 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑡 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} |
| 50 | 23, 49 | nfan 1898 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 51 | | nfv 1913 |
. . . . . . . . 9
⊢
Ⅎ𝑡(𝑥 ≼ ω ∧
Disj 𝑦 ∈ 𝑥 𝑦) |
| 52 | 50, 51 | nfan 1898 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
| 53 | | simplr 768 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑡 ∈ 𝐿) |
| 54 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 55 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑡 ∈ 𝐿) |
| 56 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝐴 ⊆ 𝑡) |
| 57 | | vex 3483 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑢 ∈ V |
| 58 | 57 | elintrab 4959 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
| 59 | 58 | biimpi 216 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
| 60 | 59 | r19.21bi 3250 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → 𝑢 ∈ 𝑡)) |
| 61 | 60 | imp 406 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑢 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑢 ∈ 𝑡) |
| 62 | 54, 55, 56, 61 | syl21anc 837 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) ∧ 𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → 𝑢 ∈ 𝑡) |
| 63 | 62 | ex 412 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑢 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} → 𝑢 ∈ 𝑡)) |
| 64 | 63 | ssrdv 3988 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝑡) |
| 65 | 64 | sspwd 4612 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ⊆ 𝒫 𝑡) |
| 66 | | simp-4r 783 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 67 | 65, 66 | sseldd 3983 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → 𝑥 ∈ 𝒫 𝑡) |
| 68 | | simpllr 775 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) |
| 69 | 15 | simp3d 1144 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 70 | 69 | r19.21bi 3250 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ 𝑡)) |
| 71 | 70 | imp 406 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ 𝐿 ∧ 𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ 𝑡) |
| 72 | 53, 67, 68, 71 | syl21anc 837 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) ∧ 𝐴 ⊆ 𝑡) → ∪ 𝑥 ∈ 𝑡) |
| 73 | 72 | ex 412 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) ∧ 𝑡 ∈ 𝐿) → (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
| 74 | 73 | ex 412 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → (𝑡 ∈ 𝐿 → (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡))) |
| 75 | 52, 74 | ralrimi 3256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
| 76 | | vuniex 7760 |
. . . . . . . 8
⊢ ∪ 𝑥
∈ V |
| 77 | 76 | elintrab 4959 |
. . . . . . 7
⊢ (∪ 𝑥
∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ↔ ∀𝑡 ∈ 𝐿 (𝐴 ⊆ 𝑡 → ∪ 𝑥 ∈ 𝑡)) |
| 78 | 75, 77 | sylibr 234 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦)) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) |
| 79 | 78 | ex 412 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}) → ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})) |
| 80 | 79 | ralrimiva 3145 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})) |
| 81 | 22, 47, 80 | 3jca 1128 |
. . 3
⊢ (𝜑 → (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡}))) |
| 82 | 13, 81 | jca 511 |
. 2
⊢ (𝜑 → (∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})))) |
| 83 | 4 | isldsys 34158 |
. 2
⊢ (∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝐿 ↔ (∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} (𝑂 ∖ 𝑥) ∈ ∩ {𝑡 ∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∧ ∀𝑥 ∈ 𝒫 ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → ∪ 𝑥 ∈ ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡})))) |
| 84 | 82, 83 | sylibr 234 |
1
⊢ (𝜑 → ∩ {𝑡
∈ 𝐿 ∣ 𝐴 ⊆ 𝑡} ∈ 𝐿) |