Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldsysgenld Structured version   Visualization version   GIF version

Theorem ldsysgenld 34150
Description: The intersection of all lambda-systems containing a given collection of sets 𝐴, which is called the lambda-system generated by 𝐴, is itself also a lambda-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
ldsysgenld.1 (𝜑𝑂𝑉)
ldsysgenld.2 (𝜑𝐴 ⊆ 𝒫 𝑂)
Assertion
Ref Expression
ldsysgenld (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Distinct variable groups:   𝑦,𝑠   𝑡,𝐿   𝑂,𝑠,𝑡,𝑥   𝑥,𝑉   𝑦,𝑡   𝐴,𝑠,𝑡,𝑥   𝐿,𝑠,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝐴(𝑦)   𝐿(𝑦)   𝑂(𝑦)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldsysgenld
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ldsysgenld.1 . . . . 5 (𝜑𝑂𝑉)
2 pwsiga 34120 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
31, 2syl 17 . . . 4 (𝜑 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
4 isldsys.l . . . . . . . 8 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
54sigaldsys 34149 . . . . . . 7 (sigAlgebra‘𝑂) ⊆ 𝐿
65, 3sselid 3944 . . . . . 6 (𝜑 → 𝒫 𝑂𝐿)
7 ldsysgenld.2 . . . . . 6 (𝜑𝐴 ⊆ 𝒫 𝑂)
8 sseq2 3973 . . . . . . 7 (𝑡 = 𝒫 𝑂 → (𝐴𝑡𝐴 ⊆ 𝒫 𝑂))
98elrab 3659 . . . . . 6 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} ↔ (𝒫 𝑂𝐿𝐴 ⊆ 𝒫 𝑂))
106, 7, 9sylanbrc 583 . . . . 5 (𝜑 → 𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡})
11 intss1 4927 . . . . 5 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} → {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
1210, 11syl 17 . . . 4 (𝜑 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
133, 12sselpwd 5283 . . 3 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂)
144isldsys 34146 . . . . . . . . . 10 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1514simprbi 496 . . . . . . . . 9 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1615simp1d 1142 . . . . . . . 8 (𝑡𝐿 → ∅ ∈ 𝑡)
1716adantl 481 . . . . . . 7 ((𝜑𝑡𝐿) → ∅ ∈ 𝑡)
1817a1d 25 . . . . . 6 ((𝜑𝑡𝐿) → (𝐴𝑡 → ∅ ∈ 𝑡))
1918ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
20 0ex 5262 . . . . . 6 ∅ ∈ V
2120elintrab 4924 . . . . 5 (∅ ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
2219, 21sylibr 234 . . . 4 (𝜑 → ∅ ∈ {𝑡𝐿𝐴𝑡})
23 nfv 1914 . . . . . . . 8 𝑡𝜑
24 nfcv 2891 . . . . . . . . 9 𝑡𝑥
25 nfrab1 3426 . . . . . . . . . 10 𝑡{𝑡𝐿𝐴𝑡}
2625nfint 4920 . . . . . . . . 9 𝑡 {𝑡𝐿𝐴𝑡}
2724, 26nfel 2906 . . . . . . . 8 𝑡 𝑥 {𝑡𝐿𝐴𝑡}
2823, 27nfan 1899 . . . . . . 7 𝑡(𝜑𝑥 {𝑡𝐿𝐴𝑡})
29 simplr 768 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
30 vex 3451 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3130elintrab 4924 . . . . . . . . . . . . . 14 (𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3231biimpi 216 . . . . . . . . . . . . 13 (𝑥 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3332adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3433r19.21bi 3229 . . . . . . . . . . 11 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡𝑥𝑡))
3534imp 406 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
3615simp2d 1143 . . . . . . . . . . 11 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3736r19.21bi 3229 . . . . . . . . . 10 ((𝑡𝐿𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
3829, 35, 37syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑂𝑥) ∈ 𝑡)
3938ex 412 . . . . . . . 8 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
4039ex 412 . . . . . . 7 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑡𝐿 → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4128, 40ralrimi 3235 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
42 difexg 5284 . . . . . . . 8 (𝑂𝑉 → (𝑂𝑥) ∈ V)
43 elintrabg 4925 . . . . . . . 8 ((𝑂𝑥) ∈ V → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
441, 42, 433syl 18 . . . . . . 7 (𝜑 → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4544adantr 480 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4641, 45mpbird 257 . . . . 5 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4746ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4826nfpw 4582 . . . . . . . . . . 11 𝑡𝒫 {𝑡𝐿𝐴𝑡}
4924, 48nfel 2906 . . . . . . . . . 10 𝑡 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}
5023, 49nfan 1899 . . . . . . . . 9 𝑡(𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
51 nfv 1914 . . . . . . . . 9 𝑡(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
5250, 51nfan 1899 . . . . . . . 8 𝑡((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
53 simplr 768 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
54 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢 {𝑡𝐿𝐴𝑡})
55 simpllr 775 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑡𝐿)
56 simplr 768 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝐴𝑡)
57 vex 3451 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
5857elintrab 4924 . . . . . . . . . . . . . . . . . . 19 (𝑢 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
5958biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑢 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
6059r19.21bi 3229 . . . . . . . . . . . . . . . . 17 ((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) → (𝐴𝑡𝑢𝑡))
6160imp 406 . . . . . . . . . . . . . . . 16 (((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑢𝑡)
6254, 55, 56, 61syl21anc 837 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢𝑡)
6362ex 412 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑢 {𝑡𝐿𝐴𝑡} → 𝑢𝑡))
6463ssrdv 3952 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → {𝑡𝐿𝐴𝑡} ⊆ 𝑡)
6564sspwd 4576 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝒫 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑡)
66 simp-4r 783 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
6765, 66sseldd 3947 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 𝑡)
68 simpllr 775 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
6915simp3d 1144 . . . . . . . . . . . . 13 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7069r19.21bi 3229 . . . . . . . . . . . 12 ((𝑡𝐿𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7170imp 406 . . . . . . . . . . 11 (((𝑡𝐿𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
7253, 67, 68, 71syl21anc 837 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
7372ex 412 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝐴𝑡 𝑥𝑡))
7473ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑡𝐿 → (𝐴𝑡 𝑥𝑡)))
7552, 74ralrimi 3235 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
76 vuniex 7715 . . . . . . . 8 𝑥 ∈ V
7776elintrab 4924 . . . . . . 7 ( 𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
7875, 77sylibr 234 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 {𝑡𝐿𝐴𝑡})
7978ex 412 . . . . 5 ((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8079ralrimiva 3125 . . . 4 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8122, 47, 803jca 1128 . . 3 (𝜑 → (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡})))
8213, 81jca 511 . 2 (𝜑 → ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
834isldsys 34146 . 2 ( {𝑡𝐿𝐴𝑡} ∈ 𝐿 ↔ ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
8482, 83sylibr 234 1 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  c0 4296  𝒫 cpw 4563   cuni 4871   cint 4910  Disj wdisj 5074   class class class wbr 5107  cfv 6511  ωcom 7842  cdom 8916  sigAlgebracsiga 34098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-siga 34099
This theorem is referenced by:  ldgenpisys  34156  dynkin  34157
  Copyright terms: Public domain W3C validator