Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldsysgenld Structured version   Visualization version   GIF version

Theorem ldsysgenld 34141
Description: The intersection of all lambda-systems containing a given collection of sets 𝐴, which is called the lambda-system generated by 𝐴, is itself also a lambda-system. (Contributed by Thierry Arnoux, 16-Jun-2020.)
Hypotheses
Ref Expression
isldsys.l 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
ldsysgenld.1 (𝜑𝑂𝑉)
ldsysgenld.2 (𝜑𝐴 ⊆ 𝒫 𝑂)
Assertion
Ref Expression
ldsysgenld (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Distinct variable groups:   𝑦,𝑠   𝑡,𝐿   𝑂,𝑠,𝑡,𝑥   𝑥,𝑉   𝑦,𝑡   𝐴,𝑠,𝑡,𝑥   𝐿,𝑠,𝑥   𝜑,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑠)   𝐴(𝑦)   𝐿(𝑦)   𝑂(𝑦)   𝑉(𝑦,𝑡,𝑠)

Proof of Theorem ldsysgenld
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ldsysgenld.1 . . . . 5 (𝜑𝑂𝑉)
2 pwsiga 34111 . . . . 5 (𝑂𝑉 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
31, 2syl 17 . . . 4 (𝜑 → 𝒫 𝑂 ∈ (sigAlgebra‘𝑂))
4 isldsys.l . . . . . . . 8 𝐿 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠 (𝑂𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑠))}
54sigaldsys 34140 . . . . . . 7 (sigAlgebra‘𝑂) ⊆ 𝐿
65, 3sselid 3993 . . . . . 6 (𝜑 → 𝒫 𝑂𝐿)
7 ldsysgenld.2 . . . . . 6 (𝜑𝐴 ⊆ 𝒫 𝑂)
8 sseq2 4022 . . . . . . 7 (𝑡 = 𝒫 𝑂 → (𝐴𝑡𝐴 ⊆ 𝒫 𝑂))
98elrab 3695 . . . . . 6 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} ↔ (𝒫 𝑂𝐿𝐴 ⊆ 𝒫 𝑂))
106, 7, 9sylanbrc 583 . . . . 5 (𝜑 → 𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡})
11 intss1 4968 . . . . 5 (𝒫 𝑂 ∈ {𝑡𝐿𝐴𝑡} → {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
1210, 11syl 17 . . . 4 (𝜑 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑂)
133, 12sselpwd 5334 . . 3 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂)
144isldsys 34137 . . . . . . . . . 10 (𝑡𝐿 ↔ (𝑡 ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))))
1514simprbi 496 . . . . . . . . 9 (𝑡𝐿 → (∅ ∈ 𝑡 ∧ ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡)))
1615simp1d 1141 . . . . . . . 8 (𝑡𝐿 → ∅ ∈ 𝑡)
1716adantl 481 . . . . . . 7 ((𝜑𝑡𝐿) → ∅ ∈ 𝑡)
1817a1d 25 . . . . . 6 ((𝜑𝑡𝐿) → (𝐴𝑡 → ∅ ∈ 𝑡))
1918ralrimiva 3144 . . . . 5 (𝜑 → ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
20 0ex 5313 . . . . . 6 ∅ ∈ V
2120elintrab 4965 . . . . 5 (∅ ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → ∅ ∈ 𝑡))
2219, 21sylibr 234 . . . 4 (𝜑 → ∅ ∈ {𝑡𝐿𝐴𝑡})
23 nfv 1912 . . . . . . . 8 𝑡𝜑
24 nfcv 2903 . . . . . . . . 9 𝑡𝑥
25 nfrab1 3454 . . . . . . . . . 10 𝑡{𝑡𝐿𝐴𝑡}
2625nfint 4961 . . . . . . . . 9 𝑡 {𝑡𝐿𝐴𝑡}
2724, 26nfel 2918 . . . . . . . 8 𝑡 𝑥 {𝑡𝐿𝐴𝑡}
2823, 27nfan 1897 . . . . . . 7 𝑡(𝜑𝑥 {𝑡𝐿𝐴𝑡})
29 simplr 769 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
30 vex 3482 . . . . . . . . . . . . . . 15 𝑥 ∈ V
3130elintrab 4965 . . . . . . . . . . . . . 14 (𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3231biimpi 216 . . . . . . . . . . . . 13 (𝑥 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3332adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡𝑥𝑡))
3433r19.21bi 3249 . . . . . . . . . . 11 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡𝑥𝑡))
3534imp 406 . . . . . . . . . 10 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
3615simp2d 1142 . . . . . . . . . . 11 (𝑡𝐿 → ∀𝑥𝑡 (𝑂𝑥) ∈ 𝑡)
3736r19.21bi 3249 . . . . . . . . . 10 ((𝑡𝐿𝑥𝑡) → (𝑂𝑥) ∈ 𝑡)
3829, 35, 37syl2anc 584 . . . . . . . . 9 ((((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑂𝑥) ∈ 𝑡)
3938ex 412 . . . . . . . 8 (((𝜑𝑥 {𝑡𝐿𝐴𝑡}) ∧ 𝑡𝐿) → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
4039ex 412 . . . . . . 7 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑡𝐿 → (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4128, 40ralrimi 3255 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡))
42 difexg 5335 . . . . . . . 8 (𝑂𝑉 → (𝑂𝑥) ∈ V)
43 elintrabg 4966 . . . . . . . 8 ((𝑂𝑥) ∈ V → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
441, 42, 433syl 18 . . . . . . 7 (𝜑 → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4544adantr 480 . . . . . 6 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → ((𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 → (𝑂𝑥) ∈ 𝑡)))
4641, 45mpbird 257 . . . . 5 ((𝜑𝑥 {𝑡𝐿𝐴𝑡}) → (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4746ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡})
4826nfpw 4624 . . . . . . . . . . 11 𝑡𝒫 {𝑡𝐿𝐴𝑡}
4924, 48nfel 2918 . . . . . . . . . 10 𝑡 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}
5023, 49nfan 1897 . . . . . . . . 9 𝑡(𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
51 nfv 1912 . . . . . . . . 9 𝑡(𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)
5250, 51nfan 1897 . . . . . . . 8 𝑡((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
53 simplr 769 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑡𝐿)
54 simpr 484 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢 {𝑡𝐿𝐴𝑡})
55 simpllr 776 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑡𝐿)
56 simplr 769 . . . . . . . . . . . . . . . 16 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝐴𝑡)
57 vex 3482 . . . . . . . . . . . . . . . . . . . 20 𝑢 ∈ V
5857elintrab 4965 . . . . . . . . . . . . . . . . . . 19 (𝑢 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
5958biimpi 216 . . . . . . . . . . . . . . . . . 18 (𝑢 {𝑡𝐿𝐴𝑡} → ∀𝑡𝐿 (𝐴𝑡𝑢𝑡))
6059r19.21bi 3249 . . . . . . . . . . . . . . . . 17 ((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) → (𝐴𝑡𝑢𝑡))
6160imp 406 . . . . . . . . . . . . . . . 16 (((𝑢 {𝑡𝐿𝐴𝑡} ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑢𝑡)
6254, 55, 56, 61syl21anc 838 . . . . . . . . . . . . . . 15 ((((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) ∧ 𝑢 {𝑡𝐿𝐴𝑡}) → 𝑢𝑡)
6362ex 412 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑢 {𝑡𝐿𝐴𝑡} → 𝑢𝑡))
6463ssrdv 4001 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → {𝑡𝐿𝐴𝑡} ⊆ 𝑡)
6564sspwd 4618 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝒫 {𝑡𝐿𝐴𝑡} ⊆ 𝒫 𝑡)
66 simp-4r 784 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡})
6765, 66sseldd 3996 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥 ∈ 𝒫 𝑡)
68 simpllr 776 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦))
6915simp3d 1143 . . . . . . . . . . . . 13 (𝑡𝐿 → ∀𝑥 ∈ 𝒫 𝑡((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7069r19.21bi 3249 . . . . . . . . . . . 12 ((𝑡𝐿𝑥 ∈ 𝒫 𝑡) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥𝑡))
7170imp 406 . . . . . . . . . . 11 (((𝑡𝐿𝑥 ∈ 𝒫 𝑡) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥𝑡)
7253, 67, 68, 71syl21anc 838 . . . . . . . . . 10 (((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) ∧ 𝐴𝑡) → 𝑥𝑡)
7372ex 412 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) ∧ 𝑡𝐿) → (𝐴𝑡 𝑥𝑡))
7473ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → (𝑡𝐿 → (𝐴𝑡 𝑥𝑡)))
7552, 74ralrimi 3255 . . . . . . 7 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
76 vuniex 7758 . . . . . . . 8 𝑥 ∈ V
7776elintrab 4965 . . . . . . 7 ( 𝑥 {𝑡𝐿𝐴𝑡} ↔ ∀𝑡𝐿 (𝐴𝑡 𝑥𝑡))
7875, 77sylibr 234 . . . . . 6 (((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) ∧ (𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦)) → 𝑥 {𝑡𝐿𝐴𝑡})
7978ex 412 . . . . 5 ((𝜑𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡}) → ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8079ralrimiva 3144 . . . 4 (𝜑 → ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))
8122, 47, 803jca 1127 . . 3 (𝜑 → (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡})))
8213, 81jca 511 . 2 (𝜑 → ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
834isldsys 34137 . 2 ( {𝑡𝐿𝐴𝑡} ∈ 𝐿 ↔ ( {𝑡𝐿𝐴𝑡} ∈ 𝒫 𝒫 𝑂 ∧ (∅ ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 {𝑡𝐿𝐴𝑡} (𝑂𝑥) ∈ {𝑡𝐿𝐴𝑡} ∧ ∀𝑥 ∈ 𝒫 {𝑡𝐿𝐴𝑡} ((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → 𝑥 {𝑡𝐿𝐴𝑡}))))
8482, 83sylibr 234 1 (𝜑 {𝑡𝐿𝐴𝑡} ∈ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  cdif 3960  wss 3963  c0 4339  𝒫 cpw 4605   cuni 4912   cint 4951  Disj wdisj 5115   class class class wbr 5148  cfv 6563  ωcom 7887  cdom 8982  sigAlgebracsiga 34089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-oi 9548  df-dju 9939  df-card 9977  df-acn 9980  df-ac 10154  df-siga 34090
This theorem is referenced by:  ldgenpisys  34147  dynkin  34148
  Copyright terms: Public domain W3C validator