Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 47257
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6832. To prove a deduction version of this analogous to nffvd 6834 is not easily possible because a deduction version of nfdfat 47166 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47248 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 47166 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2894 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5136 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6441 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5891 . . . . 5 𝑥ran 𝐹
98nfuni 4863 . . . 4 𝑥 ran 𝐹
109nfpw 4566 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4503 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2892 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2879  ifcif 4472  𝒫 cpw 4547   cuni 4856   class class class wbr 5089  ran crn 5615  cio 6435   defAt wdfat 47155  ''''cafv2 47247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-dfat 47158  df-afv2 47248
This theorem is referenced by:  csbafv212g  47258
  Copyright terms: Public domain W3C validator