Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 47176
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6897. To prove a deduction version of this analogous to nffvd 6899 is not easily possible because a deduction version of nfdfat 47085 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47167 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 47085 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2897 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5172 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6499 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5945 . . . . 5 𝑥ran 𝐹
98nfuni 4896 . . . 4 𝑥 ran 𝐹
109nfpw 4601 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4538 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2895 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2882  ifcif 4507  𝒫 cpw 4582   cuni 4889   class class class wbr 5125  ran crn 5668  cio 6493   defAt wdfat 47074  ''''cafv2 47166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-iota 6495  df-fun 6544  df-dfat 47077  df-afv2 47167
This theorem is referenced by:  csbafv212g  47177
  Copyright terms: Public domain W3C validator