![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6901. To prove a deduction version of this analogous to nffvd 6903 is not easily possible because a deduction version of nfdfat 46294 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 46376 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfdfat 46294 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
5 | nfcv 2902 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 2, 5 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
7 | 6 | nfiotaw 6499 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
8 | 2 | nfrn 5951 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
9 | 8 | nfuni 4915 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
10 | 9 | nfpw 4621 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
11 | 4, 7, 10 | nfif 4558 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
12 | 1, 11 | nfcxfr 2900 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2882 ifcif 4528 𝒫 cpw 4602 ∪ cuni 4908 class class class wbr 5148 ran crn 5677 ℩cio 6493 defAt wdfat 46283 ''''cafv2 46375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-dfat 46286 df-afv2 46376 |
This theorem is referenced by: csbafv212g 46386 |
Copyright terms: Public domain | W3C validator |