Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 47168
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6917. To prove a deduction version of this analogous to nffvd 6919 is not easily possible because a deduction version of nfdfat 47077 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47159 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 47077 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2903 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5195 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6520 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5966 . . . . 5 𝑥ran 𝐹
98nfuni 4919 . . . 4 𝑥 ran 𝐹
109nfpw 4624 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4561 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2901 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  ifcif 4531  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  ran crn 5690  cio 6514   defAt wdfat 47066  ''''cafv2 47158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-iota 6516  df-fun 6565  df-dfat 47069  df-afv2 47159
This theorem is referenced by:  csbafv212g  47169
  Copyright terms: Public domain W3C validator