| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for function value, analogous to nffv 6868. To prove a deduction version of this analogous to nffvd 6870 is not easily possible because a deduction version of nfdfat 47128 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
| nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47210 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
| 2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfdfat 47128 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| 5 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 3, 2, 5 | nfbr 5154 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 7 | 6 | nfiotaw 6468 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 8 | 2 | nfrn 5916 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
| 9 | 8 | nfuni 4878 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
| 10 | 9 | nfpw 4582 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
| 11 | 4, 7, 10 | nfif 4519 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
| 12 | 1, 11 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 ifcif 4488 𝒫 cpw 4563 ∪ cuni 4871 class class class wbr 5107 ran crn 5639 ℩cio 6462 defAt wdfat 47117 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: csbafv212g 47220 |
| Copyright terms: Public domain | W3C validator |