Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 44661
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6778. To prove a deduction version of this analogous to nffvd 6780 is not easily possible because a deduction version of nfdfat 44570 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 44652 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 44570 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2908 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5125 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6392 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5858 . . . . 5 𝑥ran 𝐹
98nfuni 4851 . . . 4 𝑥 ran 𝐹
109nfpw 4559 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4494 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2906 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2888  ifcif 4464  𝒫 cpw 4538   cuni 4844   class class class wbr 5078  ran crn 5589  cio 6386   defAt wdfat 44559  ''''cafv2 44651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-iota 6388  df-fun 6432  df-dfat 44562  df-afv2 44652
This theorem is referenced by:  csbafv212g  44662
  Copyright terms: Public domain W3C validator