Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 45974
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6902. To prove a deduction version of this analogous to nffvd 6904 is not easily possible because a deduction version of nfdfat 45883 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 45965 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 45883 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2904 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5196 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6500 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5952 . . . . 5 𝑥ran 𝐹
98nfuni 4916 . . . 4 𝑥 ran 𝐹
109nfpw 4622 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4559 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2902 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884  ifcif 4529  𝒫 cpw 4603   cuni 4909   class class class wbr 5149  ran crn 5678  cio 6494   defAt wdfat 45872  ''''cafv2 45964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-iota 6496  df-fun 6546  df-dfat 45875  df-afv2 45965
This theorem is referenced by:  csbafv212g  45975
  Copyright terms: Public domain W3C validator