Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6778. To prove a deduction version of this analogous to nffvd 6780 is not easily possible because a deduction version of nfdfat 44570 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 44652 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfdfat 44570 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
5 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 2, 5 | nfbr 5125 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
7 | 6 | nfiotaw 6392 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
8 | 2 | nfrn 5858 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
9 | 8 | nfuni 4851 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
10 | 9 | nfpw 4559 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
11 | 4, 7, 10 | nfif 4494 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
12 | 1, 11 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ifcif 4464 𝒫 cpw 4538 ∪ cuni 4844 class class class wbr 5078 ran crn 5589 ℩cio 6386 defAt wdfat 44559 ''''cafv2 44651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-iota 6388 df-fun 6432 df-dfat 44562 df-afv2 44652 |
This theorem is referenced by: csbafv212g 44662 |
Copyright terms: Public domain | W3C validator |