Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 47192
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6850. To prove a deduction version of this analogous to nffvd 6852 is not easily possible because a deduction version of nfdfat 47101 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47183 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 47101 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2891 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5149 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6456 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5905 . . . . 5 𝑥ran 𝐹
98nfuni 4874 . . . 4 𝑥 ran 𝐹
109nfpw 4578 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4515 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2889 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  ifcif 4484  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  ran crn 5632  cio 6450   defAt wdfat 47090  ''''cafv2 47182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-dfat 47093  df-afv2 47183
This theorem is referenced by:  csbafv212g  47193
  Copyright terms: Public domain W3C validator