![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6902. To prove a deduction version of this analogous to nffvd 6904 is not easily possible because a deduction version of nfdfat 45883 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 45965 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfdfat 45883 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
5 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 2, 5 | nfbr 5196 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
7 | 6 | nfiotaw 6500 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
8 | 2 | nfrn 5952 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
9 | 8 | nfuni 4916 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
10 | 9 | nfpw 4622 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
11 | 4, 7, 10 | nfif 4559 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
12 | 1, 11 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2884 ifcif 4529 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 ran crn 5678 ℩cio 6494 defAt wdfat 45872 ''''cafv2 45964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-dfat 45875 df-afv2 45965 |
This theorem is referenced by: csbafv212g 45975 |
Copyright terms: Public domain | W3C validator |