Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 46385
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6901. To prove a deduction version of this analogous to nffvd 6903 is not easily possible because a deduction version of nfdfat 46294 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 46376 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 46294 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2902 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5195 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6499 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5951 . . . . 5 𝑥ran 𝐹
98nfuni 4915 . . . 4 𝑥 ran 𝐹
109nfpw 4621 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4558 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2900 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2882  ifcif 4528  𝒫 cpw 4602   cuni 4908   class class class wbr 5148  ran crn 5677  cio 6493   defAt wdfat 46283  ''''cafv2 46375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-dfat 46286  df-afv2 46376
This theorem is referenced by:  csbafv212g  46386
  Copyright terms: Public domain W3C validator