Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfafv2 Structured version   Visualization version   GIF version

Theorem nfafv2 47219
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6868. To prove a deduction version of this analogous to nffvd 6870 is not easily possible because a deduction version of nfdfat 47128 cannot be shown easily. (Contributed by AV, 4-Sep-2022.)
Hypotheses
Ref Expression
nfafv2.1 𝑥𝐹
nfafv2.2 𝑥𝐴
Assertion
Ref Expression
nfafv2 𝑥(𝐹''''𝐴)

Proof of Theorem nfafv2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-afv2 47210 . 2 (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
2 nfafv2.1 . . . 4 𝑥𝐹
3 nfafv2.2 . . . 4 𝑥𝐴
42, 3nfdfat 47128 . . 3 𝑥 𝐹 defAt 𝐴
5 nfcv 2891 . . . . 5 𝑥𝑦
63, 2, 5nfbr 5154 . . . 4 𝑥 𝐴𝐹𝑦
76nfiotaw 6468 . . 3 𝑥(℩𝑦𝐴𝐹𝑦)
82nfrn 5916 . . . . 5 𝑥ran 𝐹
98nfuni 4878 . . . 4 𝑥 ran 𝐹
109nfpw 4582 . . 3 𝑥𝒫 ran 𝐹
114, 7, 10nfif 4519 . 2 𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ran 𝐹)
121, 11nfcxfr 2889 1 𝑥(𝐹''''𝐴)
Colors of variables: wff setvar class
Syntax hints:  wnfc 2876  ifcif 4488  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  ran crn 5639  cio 6462   defAt wdfat 47117  ''''cafv2 47209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-iota 6464  df-fun 6513  df-dfat 47120  df-afv2 47210
This theorem is referenced by:  csbafv212g  47220
  Copyright terms: Public domain W3C validator