![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for function value, analogous to nffv 6917. To prove a deduction version of this analogous to nffvd 6919 is not easily possible because a deduction version of nfdfat 47077 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
Ref | Expression |
---|---|
nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-afv2 47159 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nfdfat 47077 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
5 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
6 | 3, 2, 5 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
7 | 6 | nfiotaw 6520 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
8 | 2 | nfrn 5966 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
9 | 8 | nfuni 4919 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
10 | 9 | nfpw 4624 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
11 | 4, 7, 10 | nfif 4561 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
12 | 1, 11 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 ifcif 4531 𝒫 cpw 4605 ∪ cuni 4912 class class class wbr 5148 ran crn 5690 ℩cio 6514 defAt wdfat 47066 ''''cafv2 47158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-iota 6516 df-fun 6565 df-dfat 47069 df-afv2 47159 |
This theorem is referenced by: csbafv212g 47169 |
Copyright terms: Public domain | W3C validator |