| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for function value, analogous to nffv 6897. To prove a deduction version of this analogous to nffvd 6899 is not easily possible because a deduction version of nfdfat 47085 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
| nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47167 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
| 2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfdfat 47085 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| 5 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 3, 2, 5 | nfbr 5172 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 7 | 6 | nfiotaw 6499 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 8 | 2 | nfrn 5945 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
| 9 | 8 | nfuni 4896 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
| 10 | 9 | nfpw 4601 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
| 11 | 4, 7, 10 | nfif 4538 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
| 12 | 1, 11 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2882 ifcif 4507 𝒫 cpw 4582 ∪ cuni 4889 class class class wbr 5125 ran crn 5668 ℩cio 6493 defAt wdfat 47074 ''''cafv2 47166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-iota 6495 df-fun 6544 df-dfat 47077 df-afv2 47167 |
| This theorem is referenced by: csbafv212g 47177 |
| Copyright terms: Public domain | W3C validator |