| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfafv2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for function value, analogous to nffv 6832. To prove a deduction version of this analogous to nffvd 6834 is not easily possible because a deduction version of nfdfat 47166 cannot be shown easily. (Contributed by AV, 4-Sep-2022.) |
| Ref | Expression |
|---|---|
| nfafv2.1 | ⊢ Ⅎ𝑥𝐹 |
| nfafv2.2 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfafv2 | ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-afv2 47248 | . 2 ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) | |
| 2 | nfafv2.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nfafv2.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | 2, 3 | nfdfat 47166 | . . 3 ⊢ Ⅎ𝑥 𝐹 defAt 𝐴 |
| 5 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 6 | 3, 2, 5 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑥 𝐴𝐹𝑦 |
| 7 | 6 | nfiotaw 6441 | . . 3 ⊢ Ⅎ𝑥(℩𝑦𝐴𝐹𝑦) |
| 8 | 2 | nfrn 5891 | . . . . 5 ⊢ Ⅎ𝑥ran 𝐹 |
| 9 | 8 | nfuni 4863 | . . . 4 ⊢ Ⅎ𝑥∪ ran 𝐹 |
| 10 | 9 | nfpw 4566 | . . 3 ⊢ Ⅎ𝑥𝒫 ∪ ran 𝐹 |
| 11 | 4, 7, 10 | nfif 4503 | . 2 ⊢ Ⅎ𝑥if(𝐹 defAt 𝐴, (℩𝑦𝐴𝐹𝑦), 𝒫 ∪ ran 𝐹) |
| 12 | 1, 11 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥(𝐹''''𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 ifcif 4472 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ran crn 5615 ℩cio 6435 defAt wdfat 47155 ''''cafv2 47247 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-dfat 47158 df-afv2 47248 |
| This theorem is referenced by: csbafv212g 47258 |
| Copyright terms: Public domain | W3C validator |