MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1 Structured version   Visualization version   GIF version

Theorem reuccatpfxs1 14795
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
Hypothesis
Ref Expression
reuccatpfxs1.1 𝑣𝑋
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑥   𝑣,𝑊,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem reuccatpfxs1
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2827 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
2 fveqeq2 6929 . . . 4 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1)))
31, 2anbi12d 631 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))))
43cbvralvw 3243 . 2 (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
5 reuccatpfxs1.1 . . . . 5 𝑣𝑋
65nfel2 2927 . . . 4 𝑣(𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋
75nfel2 2927 . . . 4 𝑣(𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋
8 s1eq 14648 . . . . . 6 (𝑣 = 𝑥 → ⟨“𝑣”⟩ = ⟨“𝑥”⟩)
98oveq2d 7464 . . . . 5 (𝑣 = 𝑥 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑥”⟩))
109eleq1d 2829 . . . 4 (𝑣 = 𝑥 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋))
11 s1eq 14648 . . . . . 6 (𝑥 = 𝑢 → ⟨“𝑥”⟩ = ⟨“𝑢”⟩)
1211oveq2d 7464 . . . . 5 (𝑥 = 𝑢 → (𝑊 ++ ⟨“𝑥”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1312eleq1d 2829 . . . 4 (𝑥 = 𝑢 → ((𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
146, 7, 10, 13reu8nf 3899 . . 3 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
15 nfv 1913 . . . . 5 𝑣 𝑊 ∈ Word 𝑉
16 nfv 1913 . . . . . 6 𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
175, 16nfralw 3317 . . . . 5 𝑣𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
1815, 17nfan 1898 . . . 4 𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
19 nfv 1913 . . . . 5 𝑣 𝑊 = (𝑥 prefix (♯‘𝑊))
205, 19nfreuw 3422 . . . 4 𝑣∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))
21 simprl 770 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
22 simpl 482 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
2322ad2antrr 725 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
2423anim1i 614 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉𝑥𝑋))
25 simplrr 777 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
26 simp-4r 783 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
27 reuccatpfxs1lem 14794 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑥𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
2824, 25, 26, 27syl3anc 1371 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
29 oveq1 7455 . . . . . . . . . . 11 (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑥 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)))
30 s1cl 14650 . . . . . . . . . . . . . 14 (𝑣𝑉 → ⟨“𝑣”⟩ ∈ Word 𝑉)
3122, 30anim12i 612 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3231ad2antrr 725 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
33 pfxccat1 14750 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3432, 33syl 17 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3529, 34sylan9eqr 2802 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑥 prefix (♯‘𝑊)) = 𝑊)
3635eqcomd 2746 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑥 prefix (♯‘𝑊)))
3736ex 412 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑥 prefix (♯‘𝑊))))
3828, 37impbid 212 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
3938ralrimiva 3152 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
40 reu6i 3750 . . . . . 6 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4121, 39, 40syl2anc 583 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4241exp31 419 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣𝑉 → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))))
4318, 20, 42rexlimd 3272 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
4414, 43biimtrid 242 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
454, 44sylan2b 593 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076  ∃!wreu 3386  cfv 6573  (class class class)co 7448  1c1 11185   + caddc 11187  chash 14379  Word cword 14562   ++ cconcat 14618  ⟨“cs1 14643   prefix cpfx 14718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-lsw 14611  df-concat 14619  df-s1 14644  df-substr 14689  df-pfx 14719
This theorem is referenced by:  reuccatpfxs1v  14796  numclwlk2lem2f1o  30411
  Copyright terms: Public domain W3C validator