MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1 Structured version   Visualization version   GIF version

Theorem reuccatpfxs1 14653
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
Hypothesis
Ref Expression
reuccatpfxs1.1 𝑣𝑋
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑥   𝑣,𝑊,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem reuccatpfxs1
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2811 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
2 fveqeq2 6831 . . . 4 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1)))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))))
43cbvralvw 3207 . 2 (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
5 reuccatpfxs1.1 . . . . 5 𝑣𝑋
65nfel2 2910 . . . 4 𝑣(𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋
75nfel2 2910 . . . 4 𝑣(𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋
8 s1eq 14507 . . . . . 6 (𝑣 = 𝑥 → ⟨“𝑣”⟩ = ⟨“𝑥”⟩)
98oveq2d 7365 . . . . 5 (𝑣 = 𝑥 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑥”⟩))
109eleq1d 2813 . . . 4 (𝑣 = 𝑥 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋))
11 s1eq 14507 . . . . . 6 (𝑥 = 𝑢 → ⟨“𝑥”⟩ = ⟨“𝑢”⟩)
1211oveq2d 7365 . . . . 5 (𝑥 = 𝑢 → (𝑊 ++ ⟨“𝑥”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1312eleq1d 2813 . . . 4 (𝑥 = 𝑢 → ((𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
146, 7, 10, 13reu8nf 3829 . . 3 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
15 nfv 1914 . . . . 5 𝑣 𝑊 ∈ Word 𝑉
16 nfv 1914 . . . . . 6 𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
175, 16nfralw 3276 . . . . 5 𝑣𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
1815, 17nfan 1899 . . . 4 𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
19 nfv 1914 . . . . 5 𝑣 𝑊 = (𝑥 prefix (♯‘𝑊))
205, 19nfreuw 3375 . . . 4 𝑣∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))
21 simprl 770 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
22 simpl 482 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
2322ad2antrr 726 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
2423anim1i 615 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉𝑥𝑋))
25 simplrr 777 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
26 simp-4r 783 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
27 reuccatpfxs1lem 14652 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑥𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
2824, 25, 26, 27syl3anc 1373 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
29 oveq1 7356 . . . . . . . . . . 11 (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑥 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)))
30 s1cl 14509 . . . . . . . . . . . . . 14 (𝑣𝑉 → ⟨“𝑣”⟩ ∈ Word 𝑉)
3122, 30anim12i 613 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3231ad2antrr 726 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
33 pfxccat1 14608 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3432, 33syl 17 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3529, 34sylan9eqr 2786 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑥 prefix (♯‘𝑊)) = 𝑊)
3635eqcomd 2735 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑥 prefix (♯‘𝑊)))
3736ex 412 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑥 prefix (♯‘𝑊))))
3828, 37impbid 212 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
3938ralrimiva 3121 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
40 reu6i 3688 . . . . . 6 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4121, 39, 40syl2anc 584 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4241exp31 419 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣𝑉 → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))))
4318, 20, 42rexlimd 3236 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
4414, 43biimtrid 242 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
454, 44sylan2b 594 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053  ∃!wreu 3341  cfv 6482  (class class class)co 7349  1c1 11010   + caddc 11012  chash 14237  Word cword 14420   ++ cconcat 14477  ⟨“cs1 14502   prefix cpfx 14577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-xnn0 12458  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-lsw 14470  df-concat 14478  df-s1 14503  df-substr 14548  df-pfx 14578
This theorem is referenced by:  reuccatpfxs1v  14654  numclwlk2lem2f1o  30323
  Copyright terms: Public domain W3C validator