MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuccatpfxs1 Structured version   Visualization version   GIF version

Theorem reuccatpfxs1 14642
Description: There is a unique word having the length of a given word increased by 1 with the given word as prefix if there is a unique symbol which extends the given word. (Contributed by Alexander van der Vekens, 6-Oct-2018.) (Revised by AV, 21-Jan-2022.) (Revised by AV, 13-Oct-2022.)
Hypothesis
Ref Expression
reuccatpfxs1.1 𝑣𝑋
Assertion
Ref Expression
reuccatpfxs1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Distinct variable groups:   𝑣,𝑉,𝑥   𝑣,𝑊,𝑥   𝑥,𝑋
Allowed substitution hint:   𝑋(𝑣)

Proof of Theorem reuccatpfxs1
Dummy variables 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1w 2821 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ Word 𝑉𝑦 ∈ Word 𝑉))
2 fveqeq2 6856 . . . 4 (𝑥 = 𝑦 → ((♯‘𝑥) = ((♯‘𝑊) + 1) ↔ (♯‘𝑦) = ((♯‘𝑊) + 1)))
31, 2anbi12d 632 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))))
43cbvralvw 3228 . 2 (∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1)) ↔ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
5 reuccatpfxs1.1 . . . . 5 𝑣𝑋
65nfel2 2926 . . . 4 𝑣(𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋
75nfel2 2926 . . . 4 𝑣(𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋
8 s1eq 14495 . . . . . 6 (𝑣 = 𝑥 → ⟨“𝑣”⟩ = ⟨“𝑥”⟩)
98oveq2d 7378 . . . . 5 (𝑣 = 𝑥 → (𝑊 ++ ⟨“𝑣”⟩) = (𝑊 ++ ⟨“𝑥”⟩))
109eleq1d 2823 . . . 4 (𝑣 = 𝑥 → ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋))
11 s1eq 14495 . . . . . 6 (𝑥 = 𝑢 → ⟨“𝑥”⟩ = ⟨“𝑢”⟩)
1211oveq2d 7378 . . . . 5 (𝑥 = 𝑢 → (𝑊 ++ ⟨“𝑥”⟩) = (𝑊 ++ ⟨“𝑢”⟩))
1312eleq1d 2823 . . . 4 (𝑥 = 𝑢 → ((𝑊 ++ ⟨“𝑥”⟩) ∈ 𝑋 ↔ (𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋))
146, 7, 10, 13reu8nf 3838 . . 3 (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ↔ ∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)))
15 nfv 1918 . . . . 5 𝑣 𝑊 ∈ Word 𝑉
16 nfv 1918 . . . . . 6 𝑣(𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
175, 16nfralw 3297 . . . . 5 𝑣𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))
1815, 17nfan 1903 . . . 4 𝑣(𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
19 nfv 1918 . . . . 5 𝑣 𝑊 = (𝑥 prefix (♯‘𝑊))
205, 19nfreuw 3390 . . . 4 𝑣∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))
21 simprl 770 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋)
22 simpl 484 . . . . . . . . . . 11 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → 𝑊 ∈ Word 𝑉)
2322ad2antrr 725 . . . . . . . . . 10 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → 𝑊 ∈ Word 𝑉)
2423anim1i 616 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉𝑥𝑋))
25 simplrr 777 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))
26 simp-4r 783 . . . . . . . . 9 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1)))
27 reuccatpfxs1lem 14641 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑥𝑋) ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢) ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
2824, 25, 26, 27syl3anc 1372 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) → 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
29 oveq1 7369 . . . . . . . . . . 11 (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → (𝑥 prefix (♯‘𝑊)) = ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)))
30 s1cl 14497 . . . . . . . . . . . . . 14 (𝑣𝑉 → ⟨“𝑣”⟩ ∈ Word 𝑉)
3122, 30anim12i 614 . . . . . . . . . . . . 13 (((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
3231ad2antrr 725 . . . . . . . . . . . 12 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉))
33 pfxccat1 14597 . . . . . . . . . . . 12 ((𝑊 ∈ Word 𝑉 ∧ ⟨“𝑣”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3432, 33syl 17 . . . . . . . . . . 11 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → ((𝑊 ++ ⟨“𝑣”⟩) prefix (♯‘𝑊)) = 𝑊)
3529, 34sylan9eqr 2799 . . . . . . . . . 10 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → (𝑥 prefix (♯‘𝑊)) = 𝑊)
3635eqcomd 2743 . . . . . . . . 9 ((((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) ∧ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)) → 𝑊 = (𝑥 prefix (♯‘𝑊)))
3736ex 414 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑥 = (𝑊 ++ ⟨“𝑣”⟩) → 𝑊 = (𝑥 prefix (♯‘𝑊))))
3828, 37impbid 211 . . . . . . 7 (((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) ∧ 𝑥𝑋) → (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
3938ralrimiva 3144 . . . . . 6 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩)))
40 reu6i 3691 . . . . . 6 (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑥𝑋 (𝑊 = (𝑥 prefix (♯‘𝑊)) ↔ 𝑥 = (𝑊 ++ ⟨“𝑣”⟩))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4121, 39, 40syl2anc 585 . . . . 5 ((((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) ∧ 𝑣𝑉) ∧ ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢))) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))
4241exp31 421 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (𝑣𝑉 → (((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊)))))
4318, 20, 42rexlimd 3252 . . 3 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃𝑣𝑉 ((𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 ∧ ∀𝑢𝑉 ((𝑊 ++ ⟨“𝑢”⟩) ∈ 𝑋𝑣 = 𝑢)) → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
4414, 43biimtrid 241 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑦𝑋 (𝑦 ∈ Word 𝑉 ∧ (♯‘𝑦) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
454, 44sylan2b 595 1 ((𝑊 ∈ Word 𝑉 ∧ ∀𝑥𝑋 (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = ((♯‘𝑊) + 1))) → (∃!𝑣𝑉 (𝑊 ++ ⟨“𝑣”⟩) ∈ 𝑋 → ∃!𝑥𝑋 𝑊 = (𝑥 prefix (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wnfc 2888  wral 3065  wrex 3074  ∃!wreu 3354  cfv 6501  (class class class)co 7362  1c1 11059   + caddc 11061  chash 14237  Word cword 14409   ++ cconcat 14465  ⟨“cs1 14490   prefix cpfx 14565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-n0 12421  df-xnn0 12493  df-z 12507  df-uz 12771  df-fz 13432  df-fzo 13575  df-hash 14238  df-word 14410  df-lsw 14458  df-concat 14466  df-s1 14491  df-substr 14536  df-pfx 14566
This theorem is referenced by:  reuccatpfxs1v  14643  numclwlk2lem2f1o  29365
  Copyright terms: Public domain W3C validator