MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfttrcl Structured version   Visualization version   GIF version

Theorem nfttrcl 9780
Description: Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Hypothesis
Ref Expression
nfttrcl.1 𝑥𝑅
Assertion
Ref Expression
nfttrcl 𝑥t++𝑅

Proof of Theorem nfttrcl
StepHypRef Expression
1 nfttrcl.1 . . . 4 𝑥𝑅
21a1i 11 . . 3 (⊤ → 𝑥𝑅)
32nfttrcld 9779 . 2 (⊤ → 𝑥t++𝑅)
43mptru 1544 1 𝑥t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wtru 1538  wnfc 2893  t++cttrcl 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-ttrcl 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator