MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfttrcl Structured version   Visualization version   GIF version

Theorem nfttrcl 9601
Description: Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Hypothesis
Ref Expression
nfttrcl.1 𝑥𝑅
Assertion
Ref Expression
nfttrcl 𝑥t++𝑅

Proof of Theorem nfttrcl
StepHypRef Expression
1 nfttrcl.1 . . . 4 𝑥𝑅
21a1i 11 . . 3 (⊤ → 𝑥𝑅)
32nfttrcld 9600 . 2 (⊤ → 𝑥t++𝑅)
43mptru 1548 1 𝑥t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wtru 1542  wnfc 2879  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-ttrcl 9598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator