| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfttrcl | Structured version Visualization version GIF version | ||
| Description: Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.) |
| Ref | Expression |
|---|---|
| nfttrcl.1 | ⊢ Ⅎ𝑥𝑅 |
| Ref | Expression |
|---|---|
| nfttrcl | ⊢ Ⅎ𝑥t++𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfttrcl.1 | . . . 4 ⊢ Ⅎ𝑥𝑅 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝑅) |
| 3 | 2 | nfttrcld 9729 | . 2 ⊢ (⊤ → Ⅎ𝑥t++𝑅) |
| 4 | 3 | mptru 1547 | 1 ⊢ Ⅎ𝑥t++𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ⊤wtru 1541 Ⅎwnfc 2884 t++cttrcl 9726 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-ttrcl 9727 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |