MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfttrcl Structured version   Visualization version   GIF version

Theorem nfttrcl 9730
Description: Bound variable hypothesis builder for transitive closure. (Contributed by Scott Fenton, 17-Oct-2024.)
Hypothesis
Ref Expression
nfttrcl.1 𝑥𝑅
Assertion
Ref Expression
nfttrcl 𝑥t++𝑅

Proof of Theorem nfttrcl
StepHypRef Expression
1 nfttrcl.1 . . . 4 𝑥𝑅
21a1i 11 . . 3 (⊤ → 𝑥𝑅)
32nfttrcld 9729 . 2 (⊤ → 𝑥t++𝑅)
43mptru 1547 1 𝑥t++𝑅
Colors of variables: wff setvar class
Syntax hints:  wtru 1541  wnfc 2884  t++cttrcl 9726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-ttrcl 9727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator