Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiotadw | Structured version Visualization version GIF version |
Description: Deduction version of nfiotaw 6395. Version of nfiotad 6396 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6392 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1917 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfvd 1918 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 4, 5 | nfbid 1905 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
7 | 3, 6 | nfald 2322 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
8 | 2, 7 | nfabdw 2930 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
9 | 8 | nfunid 4845 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
10 | 1, 9 | nfcxfrd 2906 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 {cab 2715 Ⅎwnfc 2887 ∪ cuni 4839 ℩cio 6389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 df-uni 4840 df-iota 6391 |
This theorem is referenced by: nfiotaw 6395 nfriotadw 7240 |
Copyright terms: Public domain | W3C validator |