|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nfiotadw | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfiotaw 6517. Version of nfiotad 6518 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.) | 
| Ref | Expression | 
|---|---|
| nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 | 
| nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| Ref | Expression | 
|---|---|
| nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfiota2 6514 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
| 2 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
| 3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | nfvd 1914 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
| 6 | 4, 5 | nfbid 1901 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) | 
| 7 | 3, 6 | nfald 2327 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) | 
| 8 | 2, 7 | nfabdw 2926 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) | 
| 9 | 8 | nfunid 4912 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) | 
| 10 | 1, 9 | nfcxfrd 2903 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1537 Ⅎwnf 1782 {cab 2713 Ⅎwnfc 2889 ∪ cuni 4906 ℩cio 6511 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-v 3481 df-ss 3967 df-sn 4626 df-uni 4907 df-iota 6513 | 
| This theorem is referenced by: nfiotaw 6517 nfriotadw 7397 | 
| Copyright terms: Public domain | W3C validator |