![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiotadw | Structured version Visualization version GIF version |
Description: Deduction version of nfiotaw 6520. Version of nfiotad 6521 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6517 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfvd 1913 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 4, 5 | nfbid 1900 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
7 | 3, 6 | nfald 2327 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
8 | 2, 7 | nfabdw 2925 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
9 | 8 | nfunid 4918 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
10 | 1, 9 | nfcxfrd 2902 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1780 {cab 2712 Ⅎwnfc 2888 ∪ cuni 4912 ℩cio 6514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-sn 4632 df-uni 4913 df-iota 6516 |
This theorem is referenced by: nfiotaw 6520 nfriotadw 7396 |
Copyright terms: Public domain | W3C validator |