MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotadw Structured version   Visualization version   GIF version

Theorem nfiotadw 6519
Description: Deduction version of nfiotaw 6520. Version of nfiotad 6521 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by NM, 18-Feb-2013.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
nfiotadw.1 𝑦𝜑
nfiotadw.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfiotadw (𝜑𝑥(℩𝑦𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem nfiotadw
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dfiota2 6517 . 2 (℩𝑦𝜓) = {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)}
2 nfv 1912 . . . 4 𝑧𝜑
3 nfiotadw.1 . . . . 5 𝑦𝜑
4 nfiotadw.2 . . . . . 6 (𝜑 → Ⅎ𝑥𝜓)
5 nfvd 1913 . . . . . 6 (𝜑 → Ⅎ𝑥 𝑦 = 𝑧)
64, 5nfbid 1900 . . . . 5 (𝜑 → Ⅎ𝑥(𝜓𝑦 = 𝑧))
73, 6nfald 2327 . . . 4 (𝜑 → Ⅎ𝑥𝑦(𝜓𝑦 = 𝑧))
82, 7nfabdw 2925 . . 3 (𝜑𝑥{𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
98nfunid 4918 . 2 (𝜑𝑥 {𝑧 ∣ ∀𝑦(𝜓𝑦 = 𝑧)})
101, 9nfcxfrd 2902 1 (𝜑𝑥(℩𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1780  {cab 2712  wnfc 2888   cuni 4912  cio 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-v 3480  df-ss 3980  df-sn 4632  df-uni 4913  df-iota 6516
This theorem is referenced by:  nfiotaw  6520  nfriotadw  7396
  Copyright terms: Public domain W3C validator