Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiotadw | Structured version Visualization version GIF version |
Description: Deduction version of nfiotaw 6302. Version of nfiotad 6303 with a disjoint variable condition, which does not require ax-13 2379. (Contributed by NM, 18-Feb-2013.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
nfiotadw.1 | ⊢ Ⅎ𝑦𝜑 |
nfiotadw.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfiotadw | ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 6299 | . 2 ⊢ (℩𝑦𝜓) = ∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)} | |
2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiotadw.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | nfiotadw.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | nfvd 1916 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥 𝑦 = 𝑧) | |
6 | 4, 5 | nfbid 1903 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ↔ 𝑦 = 𝑧)) |
7 | 3, 6 | nfald 2336 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝜓 ↔ 𝑦 = 𝑧)) |
8 | 2, 7 | nfabdw 2940 | . . 3 ⊢ (𝜑 → Ⅎ𝑥{𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
9 | 8 | nfunid 4807 | . 2 ⊢ (𝜑 → Ⅎ𝑥∪ {𝑧 ∣ ∀𝑦(𝜓 ↔ 𝑦 = 𝑧)}) |
10 | 1, 9 | nfcxfrd 2918 | 1 ⊢ (𝜑 → Ⅎ𝑥(℩𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1536 Ⅎwnf 1785 {cab 2735 Ⅎwnfc 2899 ∪ cuni 4801 ℩cio 6296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-in 3867 df-ss 3877 df-sn 4526 df-uni 4802 df-iota 6298 |
This theorem is referenced by: nfiotaw 6302 nfriotadw 7121 |
Copyright terms: Public domain | W3C validator |