MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mnnnnn0 Structured version   Visualization version   GIF version

Theorem 0mnnnnn0 11571
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 10294 . 2 0 ∈ ℝ
2 nnel 3048 . . 3 (¬ (0 − 𝑁) ∉ ℕ0 ↔ (0 − 𝑁) ∈ ℕ0)
3 df-neg 10522 . . . . . 6 -𝑁 = (0 − 𝑁)
43eqcomi 2773 . . . . 5 (0 − 𝑁) = -𝑁
54eleq1i 2834 . . . 4 ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0)
6 nn0ge0 11564 . . . . 5 (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁)
7 nnre 11281 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
87le0neg1d 10852 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
9 nngt0 11305 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
10 0red 10296 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1110, 7ltnled 10437 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
12 pm2.21 121 . . . . . . . 8 𝑁 ≤ 0 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
1311, 12syl6bi 244 . . . . . . 7 (𝑁 ∈ ℕ → (0 < 𝑁 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)))
149, 13mpd 15 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
158, 14sylbird 251 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ))
166, 15syl5 34 . . . 4 (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ))
175, 16syl5bi 233 . . 3 (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ))
182, 17syl5bi 233 . 2 (𝑁 ∈ ℕ → (¬ (0 − 𝑁) ∉ ℕ0 → ¬ 0 ∈ ℝ))
191, 18mt4i 154 1 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2155  wnel 3039   class class class wbr 4808  (class class class)co 6841  cr 10187  0cc0 10188   < clt 10327  cle 10328  cmin 10519  -cneg 10520  cn 11273  0cn0 11537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-er 7946  df-en 8160  df-dom 8161  df-sdom 8162  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-n0 11538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator