![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0mnnnnn0 | Structured version Visualization version GIF version |
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
Ref | Expression |
---|---|
0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11256 | . 2 ⊢ 0 ∈ ℝ | |
2 | nnel 3053 | . . 3 ⊢ (¬ (0 − 𝑁) ∉ ℕ0 ↔ (0 − 𝑁) ∈ ℕ0) | |
3 | df-neg 11487 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
4 | 3 | eqcomi 2737 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 |
5 | 4 | eleq1i 2820 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) |
6 | nn0ge0 12537 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
7 | nnre 12259 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
8 | 7 | le0neg1d 11825 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
9 | nngt0 12283 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
10 | 0red 11257 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
11 | 10, 7 | ltnled 11401 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0)) |
12 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ 𝑁 ≤ 0 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) | |
13 | 11, 12 | biimtrdi 252 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))) |
14 | 9, 13 | mpd 15 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) |
15 | 8, 14 | sylbird 259 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) |
16 | 6, 15 | syl5 34 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
17 | 5, 16 | biimtrid 241 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
18 | 2, 17 | biimtrid 241 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ (0 − 𝑁) ∉ ℕ0 → ¬ 0 ∈ ℝ)) |
19 | 1, 18 | mt4i 118 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∉ wnel 3043 class class class wbr 5152 (class class class)co 7426 ℝcr 11147 0cc0 11148 < clt 11288 ≤ cle 11289 − cmin 11484 -cneg 11485 ℕcn 12252 ℕ0cn0 12512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-nn 12253 df-n0 12513 |
This theorem is referenced by: 0nn0m1nnn0 34763 |
Copyright terms: Public domain | W3C validator |