![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0mnnnnn0 | Structured version Visualization version GIF version |
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
Ref | Expression |
---|---|
0mnnnnn0 | ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11220 | . 2 ⊢ 0 ∈ ℝ | |
2 | nnel 3050 | . . 3 ⊢ (¬ (0 − 𝑁) ∉ ℕ0 ↔ (0 − 𝑁) ∈ ℕ0) | |
3 | df-neg 11451 | . . . . . 6 ⊢ -𝑁 = (0 − 𝑁) | |
4 | 3 | eqcomi 2735 | . . . . 5 ⊢ (0 − 𝑁) = -𝑁 |
5 | 4 | eleq1i 2818 | . . . 4 ⊢ ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0) |
6 | nn0ge0 12501 | . . . . 5 ⊢ (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁) | |
7 | nnre 12223 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
8 | 7 | le0neg1d 11789 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁)) |
9 | nngt0 12247 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
10 | 0red 11221 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 0 ∈ ℝ) | |
11 | 10, 7 | ltnled 11365 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0)) |
12 | pm2.21 123 | . . . . . . . 8 ⊢ (¬ 𝑁 ≤ 0 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) | |
13 | 11, 12 | biimtrdi 252 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (0 < 𝑁 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))) |
14 | 9, 13 | mpd 15 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)) |
15 | 8, 14 | sylbird 260 | . . . . 5 ⊢ (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ)) |
16 | 6, 15 | syl5 34 | . . . 4 ⊢ (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
17 | 5, 16 | biimtrid 241 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ)) |
18 | 2, 17 | biimtrid 241 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ (0 − 𝑁) ∉ ℕ0 → ¬ 0 ∈ ℝ)) |
19 | 1, 18 | mt4i 118 | 1 ⊢ (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2098 ∉ wnel 3040 class class class wbr 5141 (class class class)co 7405 ℝcr 11111 0cc0 11112 < clt 11252 ≤ cle 11253 − cmin 11448 -cneg 11449 ℕcn 12216 ℕ0cn0 12476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 |
This theorem is referenced by: 0nn0m1nnn0 34631 |
Copyright terms: Public domain | W3C validator |