MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0mnnnnn0 Structured version   Visualization version   GIF version

Theorem 0mnnnnn0 12008
Description: The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
Assertion
Ref Expression
0mnnnnn0 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)

Proof of Theorem 0mnnnnn0
StepHypRef Expression
1 0re 10721 . 2 0 ∈ ℝ
2 nnel 3047 . . 3 (¬ (0 − 𝑁) ∉ ℕ0 ↔ (0 − 𝑁) ∈ ℕ0)
3 df-neg 10951 . . . . . 6 -𝑁 = (0 − 𝑁)
43eqcomi 2747 . . . . 5 (0 − 𝑁) = -𝑁
54eleq1i 2823 . . . 4 ((0 − 𝑁) ∈ ℕ0 ↔ -𝑁 ∈ ℕ0)
6 nn0ge0 12001 . . . . 5 (-𝑁 ∈ ℕ0 → 0 ≤ -𝑁)
7 nnre 11723 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
87le0neg1d 11289 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 ↔ 0 ≤ -𝑁))
9 nngt0 11747 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 𝑁)
10 0red 10722 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1110, 7ltnled 10865 . . . . . . . 8 (𝑁 ∈ ℕ → (0 < 𝑁 ↔ ¬ 𝑁 ≤ 0))
12 pm2.21 123 . . . . . . . 8 𝑁 ≤ 0 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
1311, 12syl6bi 256 . . . . . . 7 (𝑁 ∈ ℕ → (0 < 𝑁 → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ)))
149, 13mpd 15 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 ≤ 0 → ¬ 0 ∈ ℝ))
158, 14sylbird 263 . . . . 5 (𝑁 ∈ ℕ → (0 ≤ -𝑁 → ¬ 0 ∈ ℝ))
166, 15syl5 34 . . . 4 (𝑁 ∈ ℕ → (-𝑁 ∈ ℕ0 → ¬ 0 ∈ ℝ))
175, 16syl5bi 245 . . 3 (𝑁 ∈ ℕ → ((0 − 𝑁) ∈ ℕ0 → ¬ 0 ∈ ℝ))
182, 17syl5bi 245 . 2 (𝑁 ∈ ℕ → (¬ (0 − 𝑁) ∉ ℕ0 → ¬ 0 ∈ ℝ))
191, 18mt4i 118 1 (𝑁 ∈ ℕ → (0 − 𝑁) ∉ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2114  wnel 3038   class class class wbr 5030  (class class class)co 7170  cr 10614  0cc0 10615   < clt 10753  cle 10754  cmin 10948  -cneg 10949  cn 11716  0cn0 11976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-n0 11977
This theorem is referenced by:  0nn0m1nnn0  32642
  Copyright terms: Public domain W3C validator