MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   GIF version

Theorem pthdivtx 28097
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 28091 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 trliswlk 28065 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2738 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 27983 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 elfz0lmr 13502 . . . . . . . . 9 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)))
6 elfzo1 13437 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^(♯‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)))
7 nnnn0 12240 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
873ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
96, 8sylbi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
109adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
11 fvinim0ffz 13506 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
1210, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
13 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = 0 → (𝑃𝐽) = (𝑃‘0))
1413eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = 0 → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
1514ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
16 ffun 6603 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
1716adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → Fun 𝑃)
18 fdm 6609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
19 fzo0ss1 13417 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
20 fzossfz 13406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2119, 20sstri 3930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2221sseli 3917 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0...(♯‘𝐹)))
23 eleq2 2827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ dom 𝑃𝐼 ∈ (0...(♯‘𝐹))))
2422, 23syl5ibr 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2625imp 407 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → 𝐼 ∈ dom 𝑃)
2717, 26jca 512 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
2827adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
29 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
30 funfvima 7106 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝑃𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
32 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘0) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3331, 32syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3415, 33sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
35 nnel 3058 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3634, 35syl6ibr 251 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736necon2ad 2958 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3837adantrd 492 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3912, 38sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
4039ex 413 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
43423imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
4443com12 32 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
4544a1d 25 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
4645ex 413 . . . . . . . . . 10 (𝐽 = 0 → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
47 fvres 6793 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4847adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4948adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
5049eqcomd 2744 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼))
51 fvres 6793 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5251ad2antrl 725 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5352eqcomd 2744 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐽) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽))
5450, 53eqeq12d 2754 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽)))
55 fssres 6640 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
5621, 55mpan2 688 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
57 df-f1 6438 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
5857biimpri 227 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
5956, 58sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
60593adant3 1131 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
61 simpr 485 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))))
6261ancomd 462 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹))))
63 f1veqaeq 7130 . . . . . . . . . . . . . . . . 17 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6460, 62, 63syl2an2r 682 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6554, 64sylbid 239 . . . . . . . . . . . . . . 15 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6665ancoms 459 . . . . . . . . . . . . . 14 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6766necon3d 2964 . . . . . . . . . . . . 13 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽)))
6867ex 413 . . . . . . . . . . . 12 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽))))
6968com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
7069ex 413 . . . . . . . . . 10 (𝐽 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
719adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
7271, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
73 fveq2 6774 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = (♯‘𝐹) → (𝑃𝐽) = (𝑃‘(♯‘𝐹)))
7473eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = (♯‘𝐹) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7574ad2antrl 725 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7627adantrl 713 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
77 simprr 770 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
79 eleq1 2826 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8078, 79syl5ibcom 244 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8175, 80sylbid 239 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
82 nnel 3058 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
8381, 82syl6ibr 251 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
8483necon2ad 2958 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8584adantld 491 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8672, 85sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
8786ex 413 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
8887com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
8988a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
90893imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
9190com12 32 . . . . . . . . . . . 12 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9291a1d 25 . . . . . . . . . . 11 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
9392ex 413 . . . . . . . . . 10 (𝐽 = (♯‘𝐹) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
9446, 70, 933jaoi 1426 . . . . . . . . 9 ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
955, 94syl 17 . . . . . . . 8 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
96953imp21 1113 . . . . . . 7 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9796com12 32 . . . . . 6 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
98973exp 1118 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
992, 4, 983syl 18 . . . 4 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
100993imp 1110 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
1011, 100sylbi 216 . 2 (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
102101imp 407 1 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3o 1085  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wnel 3049  cin 3886  wss 3887  c0 4256  {cpr 4563   class class class wbr 5074  ccnv 5588  dom cdm 5589  cres 5591  cima 5592  Fun wfun 6427  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   < clt 11009  cn 11973  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Vtxcvtx 27366  Walkscwlks 27963  Trailsctrls 28058  Pathscpths 28080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966  df-trls 28060  df-pths 28084
This theorem is referenced by:  pthdadjvtx  28098  upgr4cycl4dv4e  28549
  Copyright terms: Public domain W3C validator