MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   GIF version

Theorem pthdivtx 29707
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 29701 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 trliswlk 29676 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2733 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29597 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 elfz0lmr 13685 . . . . . . . . 9 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)))
6 elfzo1 13614 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^(♯‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)))
7 nnnn0 12395 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
96, 8sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
11 fvinim0ffz 13691 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
1210, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
13 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = 0 → (𝑃𝐽) = (𝑃‘0))
1413eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = 0 → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
1514ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
16 ffun 6659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → Fun 𝑃)
18 fdm 6665 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
19 fzo0ss1 13591 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
20 fzossfz 13580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2119, 20sstri 3940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2221sseli 3926 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0...(♯‘𝐹)))
23 eleq2 2822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ dom 𝑃𝐼 ∈ (0...(♯‘𝐹))))
2422, 23imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → 𝐼 ∈ dom 𝑃)
2717, 26jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
2827adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
29 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
30 funfvima 7170 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝑃𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
32 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘0) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3415, 33sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
35 nnel 3043 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3634, 35imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736necon2ad 2944 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3837adantrd 491 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3912, 38sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
4039ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
43423imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
4443com12 32 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
4544a1d 25 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
4645ex 412 . . . . . . . . . 10 (𝐽 = 0 → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
47 fvres 6847 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4847adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4948adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
5049eqcomd 2739 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼))
51 fvres 6847 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5251ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5352eqcomd 2739 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐽) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽))
5450, 53eqeq12d 2749 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽)))
55 fssres 6694 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
5621, 55mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
57 df-f1 6491 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
5857biimpri 228 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
5956, 58sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
60593adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
61 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))))
6261ancomd 461 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹))))
63 f1veqaeq 7196 . . . . . . . . . . . . . . . . 17 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6460, 62, 63syl2an2r 685 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6554, 64sylbid 240 . . . . . . . . . . . . . . 15 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6665ancoms 458 . . . . . . . . . . . . . 14 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6766necon3d 2950 . . . . . . . . . . . . 13 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽)))
6867ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽))))
6968com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
7069ex 412 . . . . . . . . . 10 (𝐽 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
719adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
7271, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
73 fveq2 6828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = (♯‘𝐹) → (𝑃𝐽) = (𝑃‘(♯‘𝐹)))
7473eqeq2d 2744 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = (♯‘𝐹) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7574ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7627adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
77 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
79 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8078, 79syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8175, 80sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
82 nnel 3043 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
8381, 82imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
8483necon2ad 2944 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8584adantld 490 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8672, 85sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
8786ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
8887com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
8988a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
90893imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
9190com12 32 . . . . . . . . . . . 12 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9291a1d 25 . . . . . . . . . . 11 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
9392ex 412 . . . . . . . . . 10 (𝐽 = (♯‘𝐹) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
9446, 70, 933jaoi 1430 . . . . . . . . 9 ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
955, 94syl 17 . . . . . . . 8 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
96953imp21 1113 . . . . . . 7 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9796com12 32 . . . . . 6 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
98973exp 1119 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
992, 4, 983syl 18 . . . 4 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
100993imp 1110 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
1011, 100sylbi 217 . 2 (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
102101imp 406 1 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wnel 3033  cin 3897  wss 3898  c0 4282  {cpr 4577   class class class wbr 5093  ccnv 5618  dom cdm 5619  cres 5621  cima 5622  Fun wfun 6480  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014   < clt 11153  cn 12132  0cn0 12388  ...cfz 13409  ..^cfzo 13556  chash 14239  Vtxcvtx 28976  Walkscwlks 29577  Trailsctrls 29669  Pathscpths 29690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-wlks 29580  df-trls 29671  df-pths 29694
This theorem is referenced by:  pthdadjvtx  29708  upgr4cycl4dv4e  30167  upgrimpthslem2  48032
  Copyright terms: Public domain W3C validator