MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   GIF version

Theorem pthdivtx 29657
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 29651 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 trliswlk 29625 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29544 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 elfz0lmr 13743 . . . . . . . . 9 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)))
6 elfzo1 13673 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^(♯‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)))
7 nnnn0 12449 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
96, 8sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
11 fvinim0ffz 13747 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
1210, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
13 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = 0 → (𝑃𝐽) = (𝑃‘0))
1413eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = 0 → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
1514ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
16 ffun 6691 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → Fun 𝑃)
18 fdm 6697 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
19 fzo0ss1 13650 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
20 fzossfz 13639 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2119, 20sstri 3956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2221sseli 3942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0...(♯‘𝐹)))
23 eleq2 2817 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ dom 𝑃𝐼 ∈ (0...(♯‘𝐹))))
2422, 23imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → 𝐼 ∈ dom 𝑃)
2717, 26jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
2827adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
29 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
30 funfvima 7204 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝑃𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
32 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘0) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3415, 33sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
35 nnel 3039 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3634, 35imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736necon2ad 2940 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3837adantrd 491 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3912, 38sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
4039ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
43423imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
4443com12 32 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
4544a1d 25 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
4645ex 412 . . . . . . . . . 10 (𝐽 = 0 → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
47 fvres 6877 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4847adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4948adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
5049eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼))
51 fvres 6877 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5251ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5352eqcomd 2735 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐽) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽))
5450, 53eqeq12d 2745 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽)))
55 fssres 6726 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
5621, 55mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
57 df-f1 6516 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
5857biimpri 228 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
5956, 58sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
60593adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
61 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))))
6261ancomd 461 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹))))
63 f1veqaeq 7231 . . . . . . . . . . . . . . . . 17 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6460, 62, 63syl2an2r 685 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6554, 64sylbid 240 . . . . . . . . . . . . . . 15 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6665ancoms 458 . . . . . . . . . . . . . 14 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6766necon3d 2946 . . . . . . . . . . . . 13 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽)))
6867ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽))))
6968com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
7069ex 412 . . . . . . . . . 10 (𝐽 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
719adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
7271, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
73 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = (♯‘𝐹) → (𝑃𝐽) = (𝑃‘(♯‘𝐹)))
7473eqeq2d 2740 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = (♯‘𝐹) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7574ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7627adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
77 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
79 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8078, 79syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8175, 80sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
82 nnel 3039 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
8381, 82imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
8483necon2ad 2940 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8584adantld 490 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8672, 85sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
8786ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
8887com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
8988a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
90893imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
9190com12 32 . . . . . . . . . . . 12 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9291a1d 25 . . . . . . . . . . 11 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
9392ex 412 . . . . . . . . . 10 (𝐽 = (♯‘𝐹) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
9446, 70, 933jaoi 1430 . . . . . . . . 9 ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
955, 94syl 17 . . . . . . . 8 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
96953imp21 1113 . . . . . . 7 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9796com12 32 . . . . . 6 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
98973exp 1119 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
992, 4, 983syl 18 . . . 4 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
100993imp 1110 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
1011, 100sylbi 217 . 2 (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
102101imp 406 1 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wnel 3029  cin 3913  wss 3914  c0 4296  {cpr 4591   class class class wbr 5107  ccnv 5637  dom cdm 5638  cres 5640  cima 5641  Fun wfun 6505  wf 6507  1-1wf1 6508  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   < clt 11208  cn 12186  0cn0 12442  ...cfz 13468  ..^cfzo 13615  chash 14295  Vtxcvtx 28923  Walkscwlks 29524  Trailsctrls 29618  Pathscpths 29640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-wlks 29527  df-trls 29620  df-pths 29644
This theorem is referenced by:  pthdadjvtx  29658  upgr4cycl4dv4e  30114  upgrimpthslem2  47908
  Copyright terms: Public domain W3C validator