MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pthdivtx Structured version   Visualization version   GIF version

Theorem pthdivtx 29664
Description: The inner vertices of a path are distinct from all other vertices. (Contributed by AV, 5-Feb-2021.) (Proof shortened by AV, 31-Oct-2021.)
Assertion
Ref Expression
pthdivtx ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))

Proof of Theorem pthdivtx
StepHypRef Expression
1 ispth 29658 . . 3 (𝐹(Paths‘𝐺)𝑃 ↔ (𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅))
2 trliswlk 29632 . . . . 5 (𝐹(Trails‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
3 eqid 2730 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
43wlkp 29551 . . . . 5 (𝐹(Walks‘𝐺)𝑃𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
5 elfz0lmr 13750 . . . . . . . . 9 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)))
6 elfzo1 13680 . . . . . . . . . . . . . . . . . . . . 21 (𝐼 ∈ (1..^(♯‘𝐹)) ↔ (𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)))
7 nnnn0 12456 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ → (♯‘𝐹) ∈ ℕ0)
873ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . 21 ((𝐼 ∈ ℕ ∧ (♯‘𝐹) ∈ ℕ ∧ 𝐼 < (♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
96, 8sylbi 217 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → (♯‘𝐹) ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
11 fvinim0ffz 13754 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (♯‘𝐹) ∈ ℕ0) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
1210, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
13 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = 0 → (𝑃𝐽) = (𝑃‘0))
1413eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = 0 → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
1514ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘0)))
16 ffun 6694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → Fun 𝑃)
1716adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → Fun 𝑃)
18 fdm 6700 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → dom 𝑃 = (0...(♯‘𝐹)))
19 fzo0ss1 13657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (1..^(♯‘𝐹)) ⊆ (0..^(♯‘𝐹))
20 fzossfz 13646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2119, 20sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))
2221sseli 3945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ (0...(♯‘𝐹)))
23 eleq2 2818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ dom 𝑃𝐼 ∈ (0...(♯‘𝐹))))
2422, 23imbitrrid 246 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (dom 𝑃 = (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2518, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝐼 ∈ (1..^(♯‘𝐹)) → 𝐼 ∈ dom 𝑃))
2625imp 406 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → 𝐼 ∈ dom 𝑃)
2717, 26jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
2827adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
29 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
30 funfvima 7207 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Fun 𝑃𝐼 ∈ dom 𝑃) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3128, 29, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
32 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘0) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3331, 32syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘0) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
3415, 33sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
35 nnel 3040 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘0) ∈ (𝑃 “ (1..^(♯‘𝐹))))
3634, 35imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
3736necon2ad 2941 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3837adantrd 491 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
3912, 38sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
4039ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
4140com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
4241a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
43423imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
4443com12 32 . . . . . . . . . . . 12 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
4544a1d 25 . . . . . . . . . . 11 ((𝐽 = 0 ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
4645ex 412 . . . . . . . . . 10 (𝐽 = 0 → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
47 fvres 6880 . . . . . . . . . . . . . . . . . . . 20 (𝐼 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4847adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
4948adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = (𝑃𝐼))
5049eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼))
51 fvres 6880 . . . . . . . . . . . . . . . . . . 19 (𝐽 ∈ (1..^(♯‘𝐹)) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5251ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) = (𝑃𝐽))
5352eqcomd 2736 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐽) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽))
5450, 53eqeq12d 2746 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽)))
55 fssres 6729 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (1..^(♯‘𝐹)) ⊆ (0...(♯‘𝐹))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
5621, 55mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺))
57 df-f1 6519 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ↔ ((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))))
5857biimpri 228 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
5956, 58sylan 580 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹)))) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
60593adant3 1132 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺))
61 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))))
6261ancomd 461 . . . . . . . . . . . . . . . . 17 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹))))
63 f1veqaeq 7234 . . . . . . . . . . . . . . . . 17 (((𝑃 ↾ (1..^(♯‘𝐹))):(1..^(♯‘𝐹))–1-1→(Vtx‘𝐺) ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6460, 62, 63syl2an2r 685 . . . . . . . . . . . . . . . 16 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐼) = ((𝑃 ↾ (1..^(♯‘𝐹)))‘𝐽) → 𝐼 = 𝐽))
6554, 64sylbid 240 . . . . . . . . . . . . . . 15 (((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) ∧ (𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6665ancoms 458 . . . . . . . . . . . . . 14 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → ((𝑃𝐼) = (𝑃𝐽) → 𝐼 = 𝐽))
6766necon3d 2947 . . . . . . . . . . . . 13 (((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) ∧ (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅)) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽)))
6867ex 412 . . . . . . . . . . . 12 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝐼𝐽 → (𝑃𝐼) ≠ (𝑃𝐽))))
6968com23 86 . . . . . . . . . . 11 ((𝐽 ∈ (1..^(♯‘𝐹)) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
7069ex 412 . . . . . . . . . 10 (𝐽 ∈ (1..^(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
719adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (♯‘𝐹) ∈ ℕ0)
7271, 11sylan2 593 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ ↔ ((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))))))
73 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐽 = (♯‘𝐹) → (𝑃𝐽) = (𝑃‘(♯‘𝐹)))
7473eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 = (♯‘𝐹) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7574ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) ↔ (𝑃𝐼) = (𝑃‘(♯‘𝐹))))
7627adantrl 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (Fun 𝑃𝐼 ∈ dom 𝑃))
77 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → 𝐼 ∈ (1..^(♯‘𝐹)))
7876, 77, 30sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))))
79 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → ((𝑃𝐼) ∈ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8078, 79syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃‘(♯‘𝐹)) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
8175, 80sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹)))))
82 nnel 3040 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) ↔ (𝑃‘(♯‘𝐹)) ∈ (𝑃 “ (1..^(♯‘𝐹))))
8381, 82imbitrrdi 252 . . . . . . . . . . . . . . . . . . . 20 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃𝐼) = (𝑃𝐽) → ¬ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))))
8483necon2ad 2941 . . . . . . . . . . . . . . . . . . 19 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → ((𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8584adantld 490 . . . . . . . . . . . . . . . . . 18 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃‘0) ∉ (𝑃 “ (1..^(♯‘𝐹))) ∧ (𝑃‘(♯‘𝐹)) ∉ (𝑃 “ (1..^(♯‘𝐹)))) → (𝑃𝐼) ≠ (𝑃𝐽)))
8672, 85sylbid 240 . . . . . . . . . . . . . . . . 17 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ (𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹)))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽)))
8786ex 412 . . . . . . . . . . . . . . . 16 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → (𝑃𝐼) ≠ (𝑃𝐽))))
8887com23 86 . . . . . . . . . . . . . . 15 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽))))
8988a1d 25 . . . . . . . . . . . . . 14 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))))
90893imp 1110 . . . . . . . . . . . . 13 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝑃𝐼) ≠ (𝑃𝐽)))
9190com12 32 . . . . . . . . . . . 12 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9291a1d 25 . . . . . . . . . . 11 ((𝐽 = (♯‘𝐹) ∧ 𝐼 ∈ (1..^(♯‘𝐹))) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽))))
9392ex 412 . . . . . . . . . 10 (𝐽 = (♯‘𝐹) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
9446, 70, 933jaoi 1430 . . . . . . . . 9 ((𝐽 = 0 ∨ 𝐽 ∈ (1..^(♯‘𝐹)) ∨ 𝐽 = (♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
955, 94syl 17 . . . . . . . 8 (𝐽 ∈ (0...(♯‘𝐹)) → (𝐼 ∈ (1..^(♯‘𝐹)) → (𝐼𝐽 → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))))
96953imp21 1113 . . . . . . 7 ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → (𝑃𝐼) ≠ (𝑃𝐽)))
9796com12 32 . . . . . 6 ((𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
98973exp 1119 . . . . 5 (𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
992, 4, 983syl 18 . . . 4 (𝐹(Trails‘𝐺)𝑃 → (Fun (𝑃 ↾ (1..^(♯‘𝐹))) → (((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅ → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))))
100993imp 1110 . . 3 ((𝐹(Trails‘𝐺)𝑃 ∧ Fun (𝑃 ↾ (1..^(♯‘𝐹))) ∧ ((𝑃 “ {0, (♯‘𝐹)}) ∩ (𝑃 “ (1..^(♯‘𝐹)))) = ∅) → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
1011, 100sylbi 217 . 2 (𝐹(Paths‘𝐺)𝑃 → ((𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽) → (𝑃𝐼) ≠ (𝑃𝐽)))
102101imp 406 1 ((𝐹(Paths‘𝐺)𝑃 ∧ (𝐼 ∈ (1..^(♯‘𝐹)) ∧ 𝐽 ∈ (0...(♯‘𝐹)) ∧ 𝐼𝐽)) → (𝑃𝐼) ≠ (𝑃𝐽))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wnel 3030  cin 3916  wss 3917  c0 4299  {cpr 4594   class class class wbr 5110  ccnv 5640  dom cdm 5641  cres 5643  cima 5644  Fun wfun 6508  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   < clt 11215  cn 12193  0cn0 12449  ...cfz 13475  ..^cfzo 13622  chash 14302  Vtxcvtx 28930  Walkscwlks 29531  Trailsctrls 29625  Pathscpths 29647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-wlks 29534  df-trls 29627  df-pths 29651
This theorem is referenced by:  pthdadjvtx  29665  upgr4cycl4dv4e  30121  upgrimpthslem2  47912
  Copyright terms: Public domain W3C validator