MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetexb Structured version   Visualization version   GIF version

Theorem fsetexb 8627
Description: The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetexb ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetexb
StepHypRef Expression
1 ioran 981 . . . . . 6 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) ↔ (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V))
2 df-nel 3052 . . . . . . . 8 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
3 ioran 981 . . . . . . . . . 10 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅))
4 nnel 3060 . . . . . . . . . . 11 𝐴 ∉ V ↔ 𝐴 ∈ V)
5 df-ne 2946 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65bicomi 223 . . . . . . . . . . 11 𝐴 = ∅ ↔ 𝐴 ≠ ∅)
74, 6anbi12i 627 . . . . . . . . . 10 ((¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
83, 7bitri 274 . . . . . . . . 9 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
9 fsetprcnex 8625 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
109ex 413 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
118, 10sylbi 216 . . . . . . . 8 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
122, 11syl5bir 242 . . . . . . 7 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (¬ 𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1312imp 407 . . . . . 6 ((¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
141, 13sylbi 216 . . . . 5 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
15 df-nel 3052 . . . . 5 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1614, 15sylib 217 . . . 4 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1716con4i 114 . . 3 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
18 df-3or 1087 . . 3 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) ↔ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
1917, 18sylibr 233 . 2 ({𝑓𝑓:𝐴𝐵} ∈ V → (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
20 fsetdmprc0 8618 . . . 4 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
21 ffn 6597 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2221ss2abi 4005 . . . . . 6 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴}
23 sseq0 4339 . . . . . 6 (({𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴} ∧ {𝑓𝑓 Fn 𝐴} = ∅) → {𝑓𝑓:𝐴𝐵} = ∅)
2422, 23mpan 687 . . . . 5 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} = ∅)
25 0ex 5235 . . . . 5 ∅ ∈ V
2624, 25eqeltrdi 2849 . . . 4 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
2720, 26syl 17 . . 3 (𝐴 ∉ V → {𝑓𝑓:𝐴𝐵} ∈ V)
28 feq2 6579 . . . . . 6 (𝐴 = ∅ → (𝑓:𝐴𝐵𝑓:∅⟶𝐵))
2928abbidv 2809 . . . . 5 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {𝑓𝑓:∅⟶𝐵})
30 fset0 8617 . . . . 5 {𝑓𝑓:∅⟶𝐵} = {∅}
3129, 30eqtrdi 2796 . . . 4 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {∅})
32 p0ex 5311 . . . 4 {∅} ∈ V
3331, 32eqeltrdi 2849 . . 3 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
34 fsetex 8619 . . 3 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
3527, 33, 343jaoi 1426 . 2 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
3619, 35impbii 208 1 ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3o 1085   = wceq 1542  wcel 2110  {cab 2717  wne 2945  wnel 3051  Vcvv 3431  wss 3892  c0 4262  {csn 4567   Fn wfn 6426  wf 6427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-1st 7818  df-2nd 7819  df-map 8592
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator