MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetexb Structured version   Visualization version   GIF version

Theorem fsetexb 8802
Description: The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetexb ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetexb
StepHypRef Expression
1 ioran 982 . . . . . 6 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) ↔ (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V))
2 df-nel 3050 . . . . . . . 8 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
3 ioran 982 . . . . . . . . . 10 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅))
4 nnel 3058 . . . . . . . . . . 11 𝐴 ∉ V ↔ 𝐴 ∈ V)
5 df-ne 2944 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65bicomi 223 . . . . . . . . . . 11 𝐴 = ∅ ↔ 𝐴 ≠ ∅)
74, 6anbi12i 627 . . . . . . . . . 10 ((¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
83, 7bitri 274 . . . . . . . . 9 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
9 fsetprcnex 8800 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
109ex 413 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
118, 10sylbi 216 . . . . . . . 8 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
122, 11biimtrrid 242 . . . . . . 7 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (¬ 𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1312imp 407 . . . . . 6 ((¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
141, 13sylbi 216 . . . . 5 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
15 df-nel 3050 . . . . 5 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1614, 15sylib 217 . . . 4 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1716con4i 114 . . 3 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
18 df-3or 1088 . . 3 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) ↔ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
1917, 18sylibr 233 . 2 ({𝑓𝑓:𝐴𝐵} ∈ V → (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
20 fsetdmprc0 8793 . . . 4 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
21 ffn 6668 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2221ss2abi 4023 . . . . . 6 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴}
23 sseq0 4359 . . . . . 6 (({𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴} ∧ {𝑓𝑓 Fn 𝐴} = ∅) → {𝑓𝑓:𝐴𝐵} = ∅)
2422, 23mpan 688 . . . . 5 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} = ∅)
25 0ex 5264 . . . . 5 ∅ ∈ V
2624, 25eqeltrdi 2846 . . . 4 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
2720, 26syl 17 . . 3 (𝐴 ∉ V → {𝑓𝑓:𝐴𝐵} ∈ V)
28 feq2 6650 . . . . . 6 (𝐴 = ∅ → (𝑓:𝐴𝐵𝑓:∅⟶𝐵))
2928abbidv 2805 . . . . 5 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {𝑓𝑓:∅⟶𝐵})
30 fset0 8792 . . . . 5 {𝑓𝑓:∅⟶𝐵} = {∅}
3129, 30eqtrdi 2792 . . . 4 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {∅})
32 p0ex 5339 . . . 4 {∅} ∈ V
3331, 32eqeltrdi 2846 . . 3 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
34 fsetex 8794 . . 3 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
3527, 33, 343jaoi 1427 . 2 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
3619, 35impbii 208 1 ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  w3o 1086   = wceq 1541  wcel 2106  {cab 2713  wne 2943  wnel 3049  Vcvv 3445  wss 3910  c0 4282  {csn 4586   Fn wfn 6491  wf 6492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-map 8767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator