MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetexb Structured version   Visualization version   GIF version

Theorem fsetexb 8798
Description: The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetexb ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetexb
StepHypRef Expression
1 ioran 985 . . . . . 6 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) ↔ (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V))
2 df-nel 3030 . . . . . . . 8 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
3 ioran 985 . . . . . . . . . 10 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅))
4 nnel 3039 . . . . . . . . . . 11 𝐴 ∉ V ↔ 𝐴 ∈ V)
5 df-ne 2926 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65bicomi 224 . . . . . . . . . . 11 𝐴 = ∅ ↔ 𝐴 ≠ ∅)
74, 6anbi12i 628 . . . . . . . . . 10 ((¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
83, 7bitri 275 . . . . . . . . 9 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
9 fsetprcnex 8796 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
109ex 412 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
118, 10sylbi 217 . . . . . . . 8 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
122, 11biimtrrid 243 . . . . . . 7 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (¬ 𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1312imp 406 . . . . . 6 ((¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
141, 13sylbi 217 . . . . 5 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
15 df-nel 3030 . . . . 5 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1614, 15sylib 218 . . . 4 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1716con4i 114 . . 3 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
18 df-3or 1087 . . 3 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) ↔ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
1917, 18sylibr 234 . 2 ({𝑓𝑓:𝐴𝐵} ∈ V → (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
20 fsetdmprc0 8789 . . . 4 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
21 ffn 6656 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2221ss2abi 4021 . . . . . 6 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴}
23 sseq0 4356 . . . . . 6 (({𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴} ∧ {𝑓𝑓 Fn 𝐴} = ∅) → {𝑓𝑓:𝐴𝐵} = ∅)
2422, 23mpan 690 . . . . 5 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} = ∅)
25 0ex 5249 . . . . 5 ∅ ∈ V
2624, 25eqeltrdi 2836 . . . 4 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
2720, 26syl 17 . . 3 (𝐴 ∉ V → {𝑓𝑓:𝐴𝐵} ∈ V)
28 feq2 6635 . . . . . 6 (𝐴 = ∅ → (𝑓:𝐴𝐵𝑓:∅⟶𝐵))
2928abbidv 2795 . . . . 5 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {𝑓𝑓:∅⟶𝐵})
30 fset0 8788 . . . . 5 {𝑓𝑓:∅⟶𝐵} = {∅}
3129, 30eqtrdi 2780 . . . 4 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {∅})
32 p0ex 5326 . . . 4 {∅} ∈ V
3331, 32eqeltrdi 2836 . . 3 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
34 fsetex 8790 . . 3 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
3527, 33, 343jaoi 1430 . 2 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
3619, 35impbii 209 1 ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wnel 3029  Vcvv 3438  wss 3905  c0 4286  {csn 4579   Fn wfn 6481  wf 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator