MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsetexb Structured version   Visualization version   GIF version

Theorem fsetexb 8858
Description: The class of all functions from a class 𝐴 into a class 𝐵 is a set iff 𝐵 is a set or 𝐴 is not a set or 𝐴 is empty. (Contributed by AV, 15-Sep-2024.)
Assertion
Ref Expression
fsetexb ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓

Proof of Theorem fsetexb
StepHypRef Expression
1 ioran 983 . . . . . 6 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) ↔ (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V))
2 df-nel 3048 . . . . . . . 8 (𝐵 ∉ V ↔ ¬ 𝐵 ∈ V)
3 ioran 983 . . . . . . . . . 10 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅))
4 nnel 3057 . . . . . . . . . . 11 𝐴 ∉ V ↔ 𝐴 ∈ V)
5 df-ne 2942 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65bicomi 223 . . . . . . . . . . 11 𝐴 = ∅ ↔ 𝐴 ≠ ∅)
74, 6anbi12i 628 . . . . . . . . . 10 ((¬ 𝐴 ∉ V ∧ ¬ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
83, 7bitri 275 . . . . . . . . 9 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ↔ (𝐴 ∈ V ∧ 𝐴 ≠ ∅))
9 fsetprcnex 8856 . . . . . . . . . 10 (((𝐴 ∈ V ∧ 𝐴 ≠ ∅) ∧ 𝐵 ∉ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
109ex 414 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝐴 ≠ ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
118, 10sylbi 216 . . . . . . . 8 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (𝐵 ∉ V → {𝑓𝑓:𝐴𝐵} ∉ V))
122, 11biimtrrid 242 . . . . . . 7 (¬ (𝐴 ∉ V ∨ 𝐴 = ∅) → (¬ 𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∉ V))
1312imp 408 . . . . . 6 ((¬ (𝐴 ∉ V ∨ 𝐴 = ∅) ∧ ¬ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
141, 13sylbi 216 . . . . 5 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∉ V)
15 df-nel 3048 . . . . 5 ({𝑓𝑓:𝐴𝐵} ∉ V ↔ ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1614, 15sylib 217 . . . 4 (¬ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V) → ¬ {𝑓𝑓:𝐴𝐵} ∈ V)
1716con4i 114 . . 3 ({𝑓𝑓:𝐴𝐵} ∈ V → ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
18 df-3or 1089 . . 3 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) ↔ ((𝐴 ∉ V ∨ 𝐴 = ∅) ∨ 𝐵 ∈ V))
1917, 18sylibr 233 . 2 ({𝑓𝑓:𝐴𝐵} ∈ V → (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
20 fsetdmprc0 8849 . . . 4 (𝐴 ∉ V → {𝑓𝑓 Fn 𝐴} = ∅)
21 ffn 6718 . . . . . . 7 (𝑓:𝐴𝐵𝑓 Fn 𝐴)
2221ss2abi 4064 . . . . . 6 {𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴}
23 sseq0 4400 . . . . . 6 (({𝑓𝑓:𝐴𝐵} ⊆ {𝑓𝑓 Fn 𝐴} ∧ {𝑓𝑓 Fn 𝐴} = ∅) → {𝑓𝑓:𝐴𝐵} = ∅)
2422, 23mpan 689 . . . . 5 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} = ∅)
25 0ex 5308 . . . . 5 ∅ ∈ V
2624, 25eqeltrdi 2842 . . . 4 ({𝑓𝑓 Fn 𝐴} = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
2720, 26syl 17 . . 3 (𝐴 ∉ V → {𝑓𝑓:𝐴𝐵} ∈ V)
28 feq2 6700 . . . . . 6 (𝐴 = ∅ → (𝑓:𝐴𝐵𝑓:∅⟶𝐵))
2928abbidv 2802 . . . . 5 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {𝑓𝑓:∅⟶𝐵})
30 fset0 8848 . . . . 5 {𝑓𝑓:∅⟶𝐵} = {∅}
3129, 30eqtrdi 2789 . . . 4 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} = {∅})
32 p0ex 5383 . . . 4 {∅} ∈ V
3331, 32eqeltrdi 2842 . . 3 (𝐴 = ∅ → {𝑓𝑓:𝐴𝐵} ∈ V)
34 fsetex 8850 . . 3 (𝐵 ∈ V → {𝑓𝑓:𝐴𝐵} ∈ V)
3527, 33, 343jaoi 1428 . 2 ((𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V) → {𝑓𝑓:𝐴𝐵} ∈ V)
3619, 35impbii 208 1 ({𝑓𝑓:𝐴𝐵} ∈ V ↔ (𝐴 ∉ V ∨ 𝐴 = ∅ ∨ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3o 1087   = wceq 1542  wcel 2107  {cab 2710  wne 2941  wnel 3047  Vcvv 3475  wss 3949  c0 4323  {csn 4629   Fn wfn 6539  wf 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator