MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopynvov0g Structured version   Visualization version   GIF version

Theorem mpoxopynvov0g 8001
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopynvov0g (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopynvov0g
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 neq0 4276 . . . 4 (¬ (⟨𝑉, 𝑊𝐹𝐾) = ∅ ↔ ∃𝑛 𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾))
2 mpoxopn0yelv.f . . . . . . 7 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32mpoxopn0yelv 8000 . . . . . 6 ((𝑉𝑋𝑊𝑌) → (𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
4 nnel 3057 . . . . . 6 𝐾𝑉𝐾𝑉)
53, 4syl6ibr 251 . . . . 5 ((𝑉𝑋𝑊𝑌) → (𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ¬ 𝐾𝑉))
65exlimdv 1937 . . . 4 ((𝑉𝑋𝑊𝑌) → (∃𝑛 𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ¬ 𝐾𝑉))
71, 6syl5bi 241 . . 3 ((𝑉𝑋𝑊𝑌) → (¬ (⟨𝑉, 𝑊𝐹𝐾) = ∅ → ¬ 𝐾𝑉))
87con4d 115 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
98imp 406 1 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wex 1783  wcel 2108  wnel 3048  Vcvv 3422  c0 4253  cop 4564  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805
This theorem is referenced by:  mpoxopynvov0  8005
  Copyright terms: Public domain W3C validator