![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpoxopynvov0g | Structured version Visualization version GIF version |
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopynvov0g | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4361 | . . . 4 ⊢ (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ ↔ ∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) | |
2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | mpoxopn0yelv 8246 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
4 | nnel 3056 | . . . . . 6 ⊢ (¬ 𝐾 ∉ 𝑉 ↔ 𝐾 ∈ 𝑉) | |
5 | 3, 4 | imbitrrdi 252 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
6 | 5 | exlimdv 1933 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
7 | 1, 6 | biimtrid 242 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ → ¬ 𝐾 ∉ 𝑉)) |
8 | 7 | con4d 115 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
9 | 8 | imp 406 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2108 ∉ wnel 3046 Vcvv 3481 ∅c0 4342 〈cop 4640 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 1st c1st 8020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-1st 8022 df-2nd 8023 |
This theorem is referenced by: mpoxopynvov0 8251 |
Copyright terms: Public domain | W3C validator |