MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpoxopynvov0g Structured version   Visualization version   GIF version

Theorem mpoxopynvov0g 8153
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.)
Hypothesis
Ref Expression
mpoxopn0yelv.f 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
Assertion
Ref Expression
mpoxopynvov0g (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐾   𝑥,𝑉   𝑥,𝑊
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐾(𝑦)   𝑉(𝑦)   𝑊(𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem mpoxopynvov0g
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 neq0 4303 . . . 4 (¬ (⟨𝑉, 𝑊𝐹𝐾) = ∅ ↔ ∃𝑛 𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾))
2 mpoxopn0yelv.f . . . . . . 7 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st𝑥) ↦ 𝐶)
32mpoxopn0yelv 8152 . . . . . 6 ((𝑉𝑋𝑊𝑌) → (𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → 𝐾𝑉))
4 nnel 3044 . . . . . 6 𝐾𝑉𝐾𝑉)
53, 4imbitrrdi 252 . . . . 5 ((𝑉𝑋𝑊𝑌) → (𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ¬ 𝐾𝑉))
65exlimdv 1934 . . . 4 ((𝑉𝑋𝑊𝑌) → (∃𝑛 𝑛 ∈ (⟨𝑉, 𝑊𝐹𝐾) → ¬ 𝐾𝑉))
71, 6biimtrid 242 . . 3 ((𝑉𝑋𝑊𝑌) → (¬ (⟨𝑉, 𝑊𝐹𝐾) = ∅ → ¬ 𝐾𝑉))
87con4d 115 . 2 ((𝑉𝑋𝑊𝑌) → (𝐾𝑉 → (⟨𝑉, 𝑊𝐹𝐾) = ∅))
98imp 406 1 (((𝑉𝑋𝑊𝑌) ∧ 𝐾𝑉) → (⟨𝑉, 𝑊𝐹𝐾) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2113  wnel 3034  Vcvv 3438  c0 4284  cop 4583  cfv 6489  (class class class)co 7355  cmpo 7357  1st c1st 7928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931
This theorem is referenced by:  mpoxopynvov0  8157
  Copyright terms: Public domain W3C validator