Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopynvov0g | Structured version Visualization version GIF version |
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopynvov0g | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4296 | . . . 4 ⊢ (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ ↔ ∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) | |
2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | mpoxopn0yelv 8103 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
4 | nnel 3056 | . . . . . 6 ⊢ (¬ 𝐾 ∉ 𝑉 ↔ 𝐾 ∈ 𝑉) | |
5 | 3, 4 | syl6ibr 252 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
6 | 5 | exlimdv 1936 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
7 | 1, 6 | biimtrid 241 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ → ¬ 𝐾 ∉ 𝑉)) |
8 | 7 | con4d 115 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
9 | 8 | imp 408 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∉ wnel 3047 Vcvv 3442 ∅c0 4273 〈cop 4583 ‘cfv 6483 (class class class)co 7341 ∈ cmpo 7343 1st c1st 7901 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fv 6491 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7903 df-2nd 7904 |
This theorem is referenced by: mpoxopynvov0 8108 |
Copyright terms: Public domain | W3C validator |