Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpoxopynvov0g | Structured version Visualization version GIF version |
Description: If the second argument of an operation given by a maps-to rule, where the first argument is a pair and the base set of the second argument is the first component of the first argument is not element of the first component of the first argument, then the value of the operation is the empty set. (Contributed by Alexander van der Vekens, 10-Oct-2017.) |
Ref | Expression |
---|---|
mpoxopn0yelv.f | ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) |
Ref | Expression |
---|---|
mpoxopynvov0g | ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4279 | . . . 4 ⊢ (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ ↔ ∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾)) | |
2 | mpoxopn0yelv.f | . . . . . . 7 ⊢ 𝐹 = (𝑥 ∈ V, 𝑦 ∈ (1st ‘𝑥) ↦ 𝐶) | |
3 | 2 | mpoxopn0yelv 8029 | . . . . . 6 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → 𝐾 ∈ 𝑉)) |
4 | nnel 3058 | . . . . . 6 ⊢ (¬ 𝐾 ∉ 𝑉 ↔ 𝐾 ∈ 𝑉) | |
5 | 3, 4 | syl6ibr 251 | . . . . 5 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
6 | 5 | exlimdv 1936 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (∃𝑛 𝑛 ∈ (〈𝑉, 𝑊〉𝐹𝐾) → ¬ 𝐾 ∉ 𝑉)) |
7 | 1, 6 | syl5bi 241 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (¬ (〈𝑉, 𝑊〉𝐹𝐾) = ∅ → ¬ 𝐾 ∉ 𝑉)) |
8 | 7 | con4d 115 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐾 ∉ 𝑉 → (〈𝑉, 𝑊〉𝐹𝐾) = ∅)) |
9 | 8 | imp 407 | 1 ⊢ (((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) ∧ 𝐾 ∉ 𝑉) → (〈𝑉, 𝑊〉𝐹𝐾) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∉ wnel 3049 Vcvv 3432 ∅c0 4256 〈cop 4567 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 |
This theorem is referenced by: mpoxopynvov0 8034 |
Copyright terms: Public domain | W3C validator |