Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lswn0 Structured version   Visualization version   GIF version

Theorem lswn0 42267
Description: The last symbol of a not empty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases ( is the last symbol) and invalid cases ( means that no last symbol exists. This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
Assertion
Ref Expression
lswn0 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅)

Proof of Theorem lswn0
StepHypRef Expression
1 lsw 13623 . . 3 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
213ad2ant1 1169 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
3 wrdf 13578 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
4 lencl 13592 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
5 simpll 785 . . . . . . . 8 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
6 elnnne0 11633 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
76biimpri 220 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
8 nnm1nn0 11660 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ ℕ0)
10 nn0re 11627 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1110ltm1d 11285 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) < (♯‘𝑊))
1211adantr 474 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) < (♯‘𝑊))
13 elfzo0 12803 . . . . . . . . . 10 (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
149, 7, 12, 13syl3anbrc 1449 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
1514adantll 707 . . . . . . . 8 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
165, 15ffvelrnd 6608 . . . . . . 7 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉)
1716ex 403 . . . . . 6 ((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉))
183, 4, 17syl2anc 581 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉))
19 eleq1a 2900 . . . . . . . . . 10 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ = (𝑊‘((♯‘𝑊) − 1)) → ∅ ∈ 𝑉))
2019com12 32 . . . . . . . . 9 (∅ = (𝑊‘((♯‘𝑊) − 1)) → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉))
2120eqcoms 2832 . . . . . . . 8 ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉))
2221com12 32 . . . . . . 7 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ∅ ∈ 𝑉))
23 nnel 3110 . . . . . . 7 (¬ ∅ ∉ 𝑉 ↔ ∅ ∈ 𝑉)
2422, 23syl6ibr 244 . . . . . 6 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ¬ ∅ ∉ 𝑉))
2524necon2ad 3013 . . . . 5 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅))
2618, 25syl6 35 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)))
2726com23 86 . . 3 (𝑊 ∈ Word 𝑉 → (∅ ∉ 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)))
28273imp 1143 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)
292, 28eqnetrd 3065 1 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  wne 2998  wnel 3101  c0 4143   class class class wbr 4872  wf 6118  cfv 6122  (class class class)co 6904  0cc0 10251  1c1 10252   < clt 10390  cmin 10584  cn 11349  0cn0 11617  ..^cfzo 12759  chash 13409  Word cword 13573  lastSclsw 13621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-nn 11350  df-n0 11618  df-z 11704  df-uz 11968  df-fz 12619  df-fzo 12760  df-hash 13410  df-word 13574  df-lsw 13622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator