Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lswn0 Structured version   Visualization version   GIF version

Theorem lswn0 47458
Description: The last symbol of a not empty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases ( is the last symbol) and invalid cases ( means that no last symbol exists. This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
Assertion
Ref Expression
lswn0 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅)

Proof of Theorem lswn0
StepHypRef Expression
1 lsw 14582 . . 3 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
213ad2ant1 1133 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
3 wrdf 14536 . . . . . 6 (𝑊 ∈ Word 𝑉𝑊:(0..^(♯‘𝑊))⟶𝑉)
4 lencl 14551 . . . . . 6 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
5 simpll 766 . . . . . . . 8 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → 𝑊:(0..^(♯‘𝑊))⟶𝑉)
6 elnnne0 12515 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0))
76biimpri 228 . . . . . . . . . . 11 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ)
8 nnm1nn0 12542 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
97, 8syl 17 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ ℕ0)
10 nn0re 12510 . . . . . . . . . . . 12 ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ)
1110ltm1d 12174 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) < (♯‘𝑊))
1211adantr 480 . . . . . . . . . 10 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) < (♯‘𝑊))
13 elfzo0 13717 . . . . . . . . . 10 (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 1) < (♯‘𝑊)))
149, 7, 12, 13syl3anbrc 1344 . . . . . . . . 9 (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
1514adantll 714 . . . . . . . 8 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
165, 15ffvelcdmd 7075 . . . . . . 7 (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉)
1716ex 412 . . . . . 6 ((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉))
183, 4, 17syl2anc 584 . . . . 5 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉))
19 eleq1a 2829 . . . . . . . . . 10 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ = (𝑊‘((♯‘𝑊) − 1)) → ∅ ∈ 𝑉))
2019com12 32 . . . . . . . . 9 (∅ = (𝑊‘((♯‘𝑊) − 1)) → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉))
2120eqcoms 2743 . . . . . . . 8 ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉))
2221com12 32 . . . . . . 7 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ∅ ∈ 𝑉))
23 nnel 3046 . . . . . . 7 (¬ ∅ ∉ 𝑉 ↔ ∅ ∈ 𝑉)
2422, 23imbitrrdi 252 . . . . . 6 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ¬ ∅ ∉ 𝑉))
2524necon2ad 2947 . . . . 5 ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅))
2618, 25syl6 35 . . . 4 (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)))
2726com23 86 . . 3 (𝑊 ∈ Word 𝑉 → (∅ ∉ 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)))
28273imp 1110 . 2 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)
292, 28eqnetrd 2999 1 ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wnel 3036  c0 4308   class class class wbr 5119  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130   < clt 11269  cmin 11466  cn 12240  0cn0 12501  ..^cfzo 13671  chash 14348  Word cword 14531  lastSclsw 14580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator