| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lswn0 | Structured version Visualization version GIF version | ||
| Description: The last symbol of a nonempty word exists. The empty set must be excluded as symbol, because otherwise, it cannot be distinguished between valid cases (∅ is the last symbol) and invalid cases (∅ means that no last symbol exists). This is because of the special definition of a function in set.mm. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
| Ref | Expression |
|---|---|
| lswn0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsw 14473 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1))) |
| 3 | wrdf 14427 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → 𝑊:(0..^(♯‘𝑊))⟶𝑉) | |
| 4 | lencl 14442 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
| 5 | simpll 766 | . . . . . . . 8 ⊢ (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → 𝑊:(0..^(♯‘𝑊))⟶𝑉) | |
| 6 | elnnne0 12402 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
| 7 | 6 | biimpri 228 | . . . . . . . . . . 11 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → (♯‘𝑊) ∈ ℕ) |
| 8 | nnm1nn0 12429 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0) | |
| 9 | 7, 8 | syl 17 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ ℕ0) |
| 10 | nn0re 12397 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) ∈ ℕ0 → (♯‘𝑊) ∈ ℝ) | |
| 11 | 10 | ltm1d 12061 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ∈ ℕ0 → ((♯‘𝑊) − 1) < (♯‘𝑊)) |
| 12 | 11 | adantr 480 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) < (♯‘𝑊)) |
| 13 | elfzo0 13602 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)) ↔ (((♯‘𝑊) − 1) ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ ((♯‘𝑊) − 1) < (♯‘𝑊))) | |
| 14 | 9, 7, 12, 13 | syl3anbrc 1344 | . . . . . . . . 9 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 15 | 14 | adantll 714 | . . . . . . . 8 ⊢ (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) |
| 16 | 5, 15 | ffvelcdmd 7024 | . . . . . . 7 ⊢ (((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉) |
| 17 | 16 | ex 412 | . . . . . 6 ⊢ ((𝑊:(0..^(♯‘𝑊))⟶𝑉 ∧ (♯‘𝑊) ∈ ℕ0) → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉)) |
| 18 | 3, 4, 17 | syl2anc 584 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉)) |
| 19 | eleq1a 2828 | . . . . . . . . . 10 ⊢ ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ = (𝑊‘((♯‘𝑊) − 1)) → ∅ ∈ 𝑉)) | |
| 20 | 19 | com12 32 | . . . . . . . . 9 ⊢ (∅ = (𝑊‘((♯‘𝑊) − 1)) → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉)) |
| 21 | 20 | eqcoms 2741 | . . . . . . . 8 ⊢ ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ∅ ∈ 𝑉)) |
| 22 | 21 | com12 32 | . . . . . . 7 ⊢ ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ∅ ∈ 𝑉)) |
| 23 | nnel 3043 | . . . . . . 7 ⊢ (¬ ∅ ∉ 𝑉 ↔ ∅ ∈ 𝑉) | |
| 24 | 22, 23 | imbitrrdi 252 | . . . . . 6 ⊢ ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → ((𝑊‘((♯‘𝑊) − 1)) = ∅ → ¬ ∅ ∉ 𝑉)) |
| 25 | 24 | necon2ad 2944 | . . . . 5 ⊢ ((𝑊‘((♯‘𝑊) − 1)) ∈ 𝑉 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅)) |
| 26 | 18, 25 | syl6 35 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) ≠ 0 → (∅ ∉ 𝑉 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅))) |
| 27 | 26 | com23 86 | . . 3 ⊢ (𝑊 ∈ Word 𝑉 → (∅ ∉ 𝑉 → ((♯‘𝑊) ≠ 0 → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅))) |
| 28 | 27 | 3imp 1110 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (𝑊‘((♯‘𝑊) − 1)) ≠ ∅) |
| 29 | 2, 28 | eqnetrd 2996 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ∅ ∉ 𝑉 ∧ (♯‘𝑊) ≠ 0) → (lastS‘𝑊) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∉ wnel 3033 ∅c0 4282 class class class wbr 5093 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 0cc0 11013 1c1 11014 < clt 11153 − cmin 11351 ℕcn 12132 ℕ0cn0 12388 ..^cfzo 13556 ♯chash 14239 Word cword 14422 lastSclsw 14471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-lsw 14472 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |