![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0 | Structured version Visualization version GIF version |
Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv2fv0 | ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 982 | . . 3 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | |
2 | nnel 3056 | . . . . . . 7 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
3 | afv2rnfveq 45960 | . . . . . . 7 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
4 | 2, 3 | sylbi 216 | . . . . . 6 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
5 | 4 | eqeq1d 2734 | . . . . 5 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) |
6 | 5 | notbid 317 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) = ∅ ↔ ¬ (𝐹‘𝐴) = ∅)) |
7 | 6 | biimpac 479 | . . 3 ⊢ ((¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
8 | 1, 7 | sylbi 216 | . 2 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
9 | 8 | con4i 114 | 1 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∉ wnel 3046 ∅c0 4322 ran crn 5677 ‘cfv 6543 ''''cafv2 45906 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fv 6551 df-dfat 45817 df-afv2 45907 |
This theorem is referenced by: afv2fv0b 45964 |
Copyright terms: Public domain | W3C validator |