| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0 | Structured version Visualization version GIF version | ||
| Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv2fv0 | ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 985 | . . 3 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | |
| 2 | nnel 3040 | . . . . . . 7 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
| 3 | afv2rnfveq 47253 | . . . . . . 7 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
| 4 | 2, 3 | sylbi 217 | . . . . . 6 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
| 5 | 4 | eqeq1d 2732 | . . . . 5 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) |
| 6 | 5 | notbid 318 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) = ∅ ↔ ¬ (𝐹‘𝐴) = ∅)) |
| 7 | 6 | biimpac 478 | . . 3 ⊢ ((¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
| 8 | 1, 7 | sylbi 217 | . 2 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
| 9 | 8 | con4i 114 | 1 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∉ wnel 3030 ∅c0 4298 ran crn 5641 ‘cfv 6513 ''''cafv2 47199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fv 6521 df-dfat 47110 df-afv2 47200 |
| This theorem is referenced by: afv2fv0b 47257 |
| Copyright terms: Public domain | W3C validator |