Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0 Structured version   Visualization version   GIF version

Theorem afv2fv0 46878
Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fv0 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))

Proof of Theorem afv2fv0
StepHypRef Expression
1 ioran 981 . . 3 (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹))
2 nnel 3046 . . . . . . 7 (¬ (𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 afv2rnfveq 46875 . . . . . . 7 ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
42, 3sylbi 216 . . . . . 6 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
54eqeq1d 2728 . . . . 5 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 317 . . . 4 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpac 477 . . 3 ((¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹𝐴) = ∅)
81, 7sylbi 216 . 2 (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹𝐴) = ∅)
98con4i 114 1 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  wo 845   = wceq 1534  wcel 2099  wnel 3036  c0 4325  ran crn 5683  cfv 6554  ''''cafv2 46821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-iota 6506  df-fun 6556  df-fv 6562  df-dfat 46732  df-afv2 46822
This theorem is referenced by:  afv2fv0b  46879
  Copyright terms: Public domain W3C validator