Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fv0 | Structured version Visualization version GIF version |
Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv2fv0 | ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran 981 | . . 3 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹)) | |
2 | nnel 3060 | . . . . . . 7 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹) | |
3 | afv2rnfveq 44720 | . . . . . . 7 ⊢ ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
4 | 2, 3 | sylbi 216 | . . . . . 6 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = (𝐹‘𝐴)) |
5 | 4 | eqeq1d 2742 | . . . . 5 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ (𝐹‘𝐴) = ∅)) |
6 | 5 | notbid 318 | . . . 4 ⊢ (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) = ∅ ↔ ¬ (𝐹‘𝐴) = ∅)) |
7 | 6 | biimpac 479 | . . 3 ⊢ ((¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
8 | 1, 7 | sylbi 216 | . 2 ⊢ (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹‘𝐴) = ∅) |
9 | 8 | con4i 114 | 1 ⊢ ((𝐹‘𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1542 ∈ wcel 2110 ∉ wnel 3051 ∅c0 4262 ran crn 5590 ‘cfv 6431 ''''cafv2 44666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-nel 3052 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-iota 6389 df-fun 6433 df-fv 6439 df-dfat 44577 df-afv2 44667 |
This theorem is referenced by: afv2fv0b 44724 |
Copyright terms: Public domain | W3C validator |