Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fv0 Structured version   Visualization version   GIF version

Theorem afv2fv0 45963
Description: If the function's value at an argument is the empty set, then the alternate function value at this argument is the empty set or undefined. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fv0 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))

Proof of Theorem afv2fv0
StepHypRef Expression
1 ioran 982 . . 3 (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) ↔ (¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹))
2 nnel 3056 . . . . . . 7 (¬ (𝐹''''𝐴) ∉ ran 𝐹 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
3 afv2rnfveq 45960 . . . . . . 7 ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
42, 3sylbi 216 . . . . . 6 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
54eqeq1d 2734 . . . . 5 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → ((𝐹''''𝐴) = ∅ ↔ (𝐹𝐴) = ∅))
65notbid 317 . . . 4 (¬ (𝐹''''𝐴) ∉ ran 𝐹 → (¬ (𝐹''''𝐴) = ∅ ↔ ¬ (𝐹𝐴) = ∅))
76biimpac 479 . . 3 ((¬ (𝐹''''𝐴) = ∅ ∧ ¬ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹𝐴) = ∅)
81, 7sylbi 216 . 2 (¬ ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹) → ¬ (𝐹𝐴) = ∅)
98con4i 114 1 ((𝐹𝐴) = ∅ → ((𝐹''''𝐴) = ∅ ∨ (𝐹''''𝐴) ∉ ran 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wnel 3046  c0 4322  ran crn 5677  cfv 6543  ''''cafv2 45906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-iota 6495  df-fun 6545  df-fv 6551  df-dfat 45817  df-afv2 45907
This theorem is referenced by:  afv2fv0b  45964
  Copyright terms: Public domain W3C validator