![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem1 | Structured version Visualization version GIF version |
Description: Lemma for finsumvtxdg2sstep 26680. (Contributed by AV, 15-Dec-2021.) |
Ref | Expression |
---|---|
finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
finsumvtxdg2ssteplem1 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgruhgr 26218 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
2 | finsumvtxdg2sstep.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 26182 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
5 | 4 | ad2antrr 705 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸) |
6 | simprr 756 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin) | |
7 | finsumvtxdg2sstep.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
8 | ssrab2 3836 | . . . . 5 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} ⊆ dom 𝐸 | |
9 | 7, 8 | eqsstri 3784 | . . . 4 ⊢ 𝐼 ⊆ dom 𝐸 |
10 | 9 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸) |
11 | hashreshashfun 13428 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) | |
12 | 5, 6, 10, 11 | syl3anc 1476 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) |
13 | finsumvtxdg2sstep.p | . . . . . 6 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
14 | 13 | eqcomi 2780 | . . . . 5 ⊢ (𝐸 ↾ 𝐼) = 𝑃 |
15 | 14 | fveq2i 6335 | . . . 4 ⊢ (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃) |
16 | 15 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃)) |
17 | notrab 4052 | . . . . . 6 ⊢ (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} | |
18 | 7 | difeq2i 3876 | . . . . . 6 ⊢ (dom 𝐸 ∖ 𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) |
19 | finsumvtxdg2ssteplem.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
20 | nnel 3055 | . . . . . . . . 9 ⊢ (¬ 𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑖)) | |
21 | 20 | bicomi 214 | . . . . . . . 8 ⊢ (𝑁 ∈ (𝐸‘𝑖) ↔ ¬ 𝑁 ∉ (𝐸‘𝑖)) |
22 | 21 | rabbii 3335 | . . . . . . 7 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
23 | 19, 22 | eqtri 2793 | . . . . . 6 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
24 | 17, 18, 23 | 3eqtr4i 2803 | . . . . 5 ⊢ (dom 𝐸 ∖ 𝐼) = 𝐽 |
25 | 24 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸 ∖ 𝐼) = 𝐽) |
26 | 25 | fveq2d 6336 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸 ∖ 𝐼)) = (♯‘𝐽)) |
27 | 16, 26 | oveq12d 6811 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼))) = ((♯‘𝑃) + (♯‘𝐽))) |
28 | 12, 27 | eqtrd 2805 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∉ wnel 3046 {crab 3065 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 〈cop 4322 dom cdm 5249 ↾ cres 5251 Fun wfun 6025 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 + caddc 10141 ♯chash 13321 Vtxcvtx 26095 iEdgciedg 26096 UHGraphcuhgr 26172 UPGraphcupgr 26196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-n0 11495 df-xnn0 11566 df-z 11580 df-uz 11889 df-fz 12534 df-hash 13322 df-uhgr 26174 df-upgr 26198 |
This theorem is referenced by: finsumvtxdg2sstep 26680 |
Copyright terms: Public domain | W3C validator |