MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem1 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem1 29509
Description: Lemma for finsumvtxdg2sstep 29513. (Contributed by AV, 15-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝐾(𝑖)   𝑉(𝑖)

Proof of Theorem finsumvtxdg2ssteplem1
StepHypRef Expression
1 upgruhgr 29065 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 finsumvtxdg2sstep.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32uhgrfun 29029 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
41, 3syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐸)
54ad2antrr 726 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸)
6 simprr 772 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin)
7 finsumvtxdg2sstep.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
87ssrab3 4035 . . . 4 𝐼 ⊆ dom 𝐸
98a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸)
10 hashreshashfun 14364 . . 3 ((Fun 𝐸𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
115, 6, 9, 10syl3anc 1373 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
12 finsumvtxdg2sstep.p . . . . . 6 𝑃 = (𝐸𝐼)
1312eqcomi 2738 . . . . 5 (𝐸𝐼) = 𝑃
1413fveq2i 6829 . . . 4 (♯‘(𝐸𝐼)) = (♯‘𝑃)
1514a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸𝐼)) = (♯‘𝑃))
16 notrab 4275 . . . . . 6 (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
177difeq2i 4076 . . . . . 6 (dom 𝐸𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)})
18 finsumvtxdg2ssteplem.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
19 nnel 3039 . . . . . . . . 9 𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑖))
2019bicomi 224 . . . . . . . 8 (𝑁 ∈ (𝐸𝑖) ↔ ¬ 𝑁 ∉ (𝐸𝑖))
2120rabbii 3402 . . . . . . 7 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2218, 21eqtri 2752 . . . . . 6 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2316, 17, 223eqtr4i 2762 . . . . 5 (dom 𝐸𝐼) = 𝐽
2423a1i 11 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸𝐼) = 𝐽)
2524fveq2d 6830 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸𝐼)) = (♯‘𝐽))
2615, 25oveq12d 7371 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))) = ((♯‘𝑃) + (♯‘𝐽)))
2711, 26eqtrd 2764 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wnel 3029  {crab 3396  cdif 3902  wss 3905  {csn 4579  cop 4585  dom cdm 5623  cres 5625  Fun wfun 6480  cfv 6486  (class class class)co 7353  Fincfn 8879   + caddc 11031  chash 14255  Vtxcvtx 28959  iEdgciedg 28960  UHGraphcuhgr 29019  UPGraphcupgr 29043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-uhgr 29021  df-upgr 29045
This theorem is referenced by:  finsumvtxdg2sstep  29513
  Copyright terms: Public domain W3C validator