MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem1 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem1 29563
Description: Lemma for finsumvtxdg2sstep 29567. (Contributed by AV, 15-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝐾(𝑖)   𝑉(𝑖)

Proof of Theorem finsumvtxdg2ssteplem1
StepHypRef Expression
1 upgruhgr 29119 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 finsumvtxdg2sstep.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32uhgrfun 29083 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
41, 3syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐸)
54ad2antrr 726 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸)
6 simprr 773 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin)
7 finsumvtxdg2sstep.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
87ssrab3 4082 . . . 4 𝐼 ⊆ dom 𝐸
98a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸)
10 hashreshashfun 14478 . . 3 ((Fun 𝐸𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
115, 6, 9, 10syl3anc 1373 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
12 finsumvtxdg2sstep.p . . . . . 6 𝑃 = (𝐸𝐼)
1312eqcomi 2746 . . . . 5 (𝐸𝐼) = 𝑃
1413fveq2i 6909 . . . 4 (♯‘(𝐸𝐼)) = (♯‘𝑃)
1514a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸𝐼)) = (♯‘𝑃))
16 notrab 4322 . . . . . 6 (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
177difeq2i 4123 . . . . . 6 (dom 𝐸𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)})
18 finsumvtxdg2ssteplem.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
19 nnel 3056 . . . . . . . . 9 𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑖))
2019bicomi 224 . . . . . . . 8 (𝑁 ∈ (𝐸𝑖) ↔ ¬ 𝑁 ∉ (𝐸𝑖))
2120rabbii 3442 . . . . . . 7 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2218, 21eqtri 2765 . . . . . 6 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2316, 17, 223eqtr4i 2775 . . . . 5 (dom 𝐸𝐼) = 𝐽
2423a1i 11 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸𝐼) = 𝐽)
2524fveq2d 6910 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸𝐼)) = (♯‘𝐽))
2615, 25oveq12d 7449 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))) = ((♯‘𝑃) + (♯‘𝐽)))
2711, 26eqtrd 2777 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wnel 3046  {crab 3436  cdif 3948  wss 3951  {csn 4626  cop 4632  dom cdm 5685  cres 5687  Fun wfun 6555  cfv 6561  (class class class)co 7431  Fincfn 8985   + caddc 11158  chash 14369  Vtxcvtx 29013  iEdgciedg 29014  UHGraphcuhgr 29073  UPGraphcupgr 29097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370  df-uhgr 29075  df-upgr 29099
This theorem is referenced by:  finsumvtxdg2sstep  29567
  Copyright terms: Public domain W3C validator