| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for finsumvtxdg2sstep 29529. (Contributed by AV, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| Ref | Expression |
|---|---|
| finsumvtxdg2ssteplem1 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgruhgr 29081 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 2 | finsumvtxdg2sstep.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 29045 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
| 5 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸) |
| 6 | simprr 772 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin) | |
| 7 | finsumvtxdg2sstep.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 8 | 7 | ssrab3 4032 | . . . 4 ⊢ 𝐼 ⊆ dom 𝐸 |
| 9 | 8 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸) |
| 10 | hashreshashfun 14346 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) | |
| 11 | 5, 6, 9, 10 | syl3anc 1373 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) |
| 12 | finsumvtxdg2sstep.p | . . . . . 6 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 13 | 12 | eqcomi 2740 | . . . . 5 ⊢ (𝐸 ↾ 𝐼) = 𝑃 |
| 14 | 13 | fveq2i 6825 | . . . 4 ⊢ (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃)) |
| 16 | notrab 4272 | . . . . . 6 ⊢ (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} | |
| 17 | 7 | difeq2i 4073 | . . . . . 6 ⊢ (dom 𝐸 ∖ 𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) |
| 18 | finsumvtxdg2ssteplem.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
| 19 | nnel 3042 | . . . . . . . . 9 ⊢ (¬ 𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑖)) | |
| 20 | 19 | bicomi 224 | . . . . . . . 8 ⊢ (𝑁 ∈ (𝐸‘𝑖) ↔ ¬ 𝑁 ∉ (𝐸‘𝑖)) |
| 21 | 20 | rabbii 3400 | . . . . . . 7 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
| 22 | 18, 21 | eqtri 2754 | . . . . . 6 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
| 23 | 16, 17, 22 | 3eqtr4i 2764 | . . . . 5 ⊢ (dom 𝐸 ∖ 𝐼) = 𝐽 |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸 ∖ 𝐼) = 𝐽) |
| 25 | 24 | fveq2d 6826 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸 ∖ 𝐼)) = (♯‘𝐽)) |
| 26 | 15, 25 | oveq12d 7364 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼))) = ((♯‘𝑃) + (♯‘𝐽))) |
| 27 | 11, 26 | eqtrd 2766 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∉ wnel 3032 {crab 3395 ∖ cdif 3899 ⊆ wss 3902 {csn 4576 〈cop 4582 dom cdm 5616 ↾ cres 5618 Fun wfun 6475 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 + caddc 11009 ♯chash 14237 Vtxcvtx 28975 iEdgciedg 28976 UHGraphcuhgr 29035 UPGraphcupgr 29059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-uhgr 29037 df-upgr 29061 |
| This theorem is referenced by: finsumvtxdg2sstep 29529 |
| Copyright terms: Public domain | W3C validator |