MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem1 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem1 26748
Description: Lemma for finsumvtxdg2sstep 26752. (Contributed by AV, 15-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝐾(𝑖)   𝑉(𝑖)

Proof of Theorem finsumvtxdg2ssteplem1
StepHypRef Expression
1 upgruhgr 26290 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 finsumvtxdg2sstep.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32uhgrfun 26254 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
41, 3syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐸)
54ad2antrr 717 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸)
6 simprr 789 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin)
7 finsumvtxdg2sstep.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
8 ssrab2 3849 . . . . 5 {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)} ⊆ dom 𝐸
97, 8eqsstri 3797 . . . 4 𝐼 ⊆ dom 𝐸
109a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸)
11 hashreshashfun 13434 . . 3 ((Fun 𝐸𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
125, 6, 10, 11syl3anc 1490 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
13 finsumvtxdg2sstep.p . . . . . 6 𝑃 = (𝐸𝐼)
1413eqcomi 2774 . . . . 5 (𝐸𝐼) = 𝑃
1514fveq2i 6382 . . . 4 (♯‘(𝐸𝐼)) = (♯‘𝑃)
1615a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸𝐼)) = (♯‘𝑃))
17 notrab 4070 . . . . . 6 (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
187difeq2i 3889 . . . . . 6 (dom 𝐸𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)})
19 finsumvtxdg2ssteplem.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
20 nnel 3049 . . . . . . . . 9 𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑖))
2120bicomi 215 . . . . . . . 8 (𝑁 ∈ (𝐸𝑖) ↔ ¬ 𝑁 ∉ (𝐸𝑖))
2221rabbii 3334 . . . . . . 7 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2319, 22eqtri 2787 . . . . . 6 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2417, 18, 233eqtr4i 2797 . . . . 5 (dom 𝐸𝐼) = 𝐽
2524a1i 11 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸𝐼) = 𝐽)
2625fveq2d 6383 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸𝐼)) = (♯‘𝐽))
2716, 26oveq12d 6864 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))) = ((♯‘𝑃) + (♯‘𝐽)))
2812, 27eqtrd 2799 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1652  wcel 2155  wnel 3040  {crab 3059  cdif 3731  wss 3734  {csn 4336  cop 4342  dom cdm 5279  cres 5281  Fun wfun 6064  cfv 6070  (class class class)co 6846  Fincfn 8164   + caddc 10196  chash 13328  Vtxcvtx 26181  iEdgciedg 26182  UHGraphcuhgr 26244  UPGraphcupgr 26268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-om 7268  df-1st 7370  df-2nd 7371  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-oadd 7772  df-er 7951  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-nn 11280  df-2 11340  df-n0 11544  df-xnn0 11616  df-z 11630  df-uz 11894  df-fz 12541  df-hash 13329  df-uhgr 26246  df-upgr 26270
This theorem is referenced by:  finsumvtxdg2sstep  26752
  Copyright terms: Public domain W3C validator