MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finsumvtxdg2ssteplem1 Structured version   Visualization version   GIF version

Theorem finsumvtxdg2ssteplem1 29346
Description: Lemma for finsumvtxdg2sstep 29350. (Contributed by AV, 15-Dec-2021.)
Hypotheses
Ref Expression
finsumvtxdg2sstep.v 𝑉 = (Vtx‘𝐺)
finsumvtxdg2sstep.e 𝐸 = (iEdg‘𝐺)
finsumvtxdg2sstep.k 𝐾 = (𝑉 ∖ {𝑁})
finsumvtxdg2sstep.i 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
finsumvtxdg2sstep.p 𝑃 = (𝐸𝐼)
finsumvtxdg2sstep.s 𝑆 = ⟨𝐾, 𝑃
finsumvtxdg2ssteplem.j 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
Assertion
Ref Expression
finsumvtxdg2ssteplem1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Distinct variable groups:   𝑖,𝐸   𝑖,𝐺   𝑖,𝑁
Allowed substitution hints:   𝑃(𝑖)   𝑆(𝑖)   𝐼(𝑖)   𝐽(𝑖)   𝐾(𝑖)   𝑉(𝑖)

Proof of Theorem finsumvtxdg2ssteplem1
StepHypRef Expression
1 upgruhgr 28902 . . . . 5 (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph)
2 finsumvtxdg2sstep.e . . . . . 6 𝐸 = (iEdg‘𝐺)
32uhgrfun 28866 . . . . 5 (𝐺 ∈ UHGraph → Fun 𝐸)
41, 3syl 17 . . . 4 (𝐺 ∈ UPGraph → Fun 𝐸)
54ad2antrr 725 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸)
6 simprr 772 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin)
7 finsumvtxdg2sstep.i . . . . 5 𝐼 = {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}
87ssrab3 4076 . . . 4 𝐼 ⊆ dom 𝐸
98a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸)
10 hashreshashfun 14422 . . 3 ((Fun 𝐸𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
115, 6, 9, 10syl3anc 1369 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))))
12 finsumvtxdg2sstep.p . . . . . 6 𝑃 = (𝐸𝐼)
1312eqcomi 2736 . . . . 5 (𝐸𝐼) = 𝑃
1413fveq2i 6894 . . . 4 (♯‘(𝐸𝐼)) = (♯‘𝑃)
1514a1i 11 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸𝐼)) = (♯‘𝑃))
16 notrab 4307 . . . . . 6 (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
177difeq2i 4115 . . . . . 6 (dom 𝐸𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸𝑁 ∉ (𝐸𝑖)})
18 finsumvtxdg2ssteplem.j . . . . . . 7 𝐽 = {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)}
19 nnel 3051 . . . . . . . . 9 𝑁 ∉ (𝐸𝑖) ↔ 𝑁 ∈ (𝐸𝑖))
2019bicomi 223 . . . . . . . 8 (𝑁 ∈ (𝐸𝑖) ↔ ¬ 𝑁 ∉ (𝐸𝑖))
2120rabbii 3433 . . . . . . 7 {𝑖 ∈ dom 𝐸𝑁 ∈ (𝐸𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2218, 21eqtri 2755 . . . . . 6 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸𝑖)}
2316, 17, 223eqtr4i 2765 . . . . 5 (dom 𝐸𝐼) = 𝐽
2423a1i 11 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸𝐼) = 𝐽)
2524fveq2d 6895 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸𝐼)) = (♯‘𝐽))
2615, 25oveq12d 7432 . 2 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸𝐼)) + (♯‘(dom 𝐸𝐼))) = ((♯‘𝑃) + (♯‘𝐽)))
2711, 26eqtrd 2767 1 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  wcel 2099  wnel 3041  {crab 3427  cdif 3941  wss 3944  {csn 4624  cop 4630  dom cdm 5672  cres 5674  Fun wfun 6536  cfv 6542  (class class class)co 7414  Fincfn 8955   + caddc 11133  chash 14313  Vtxcvtx 28796  iEdgciedg 28797  UHGraphcuhgr 28856  UPGraphcupgr 28880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-dju 9916  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-n0 12495  df-xnn0 12567  df-z 12581  df-uz 12845  df-fz 13509  df-hash 14314  df-uhgr 28858  df-upgr 28882
This theorem is referenced by:  finsumvtxdg2sstep  29350
  Copyright terms: Public domain W3C validator