| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for finsumvtxdg2sstep 29477. (Contributed by AV, 15-Dec-2021.) |
| Ref | Expression |
|---|---|
| finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
| finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
| finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
| finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
| finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
| Ref | Expression |
|---|---|
| finsumvtxdg2ssteplem1 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgruhgr 29029 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
| 2 | finsumvtxdg2sstep.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | uhgrfun 28993 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
| 4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
| 5 | 4 | ad2antrr 726 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸) |
| 6 | simprr 772 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin) | |
| 7 | finsumvtxdg2sstep.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
| 8 | 7 | ssrab3 4045 | . . . 4 ⊢ 𝐼 ⊆ dom 𝐸 |
| 9 | 8 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸) |
| 10 | hashreshashfun 14404 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) | |
| 11 | 5, 6, 9, 10 | syl3anc 1373 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) |
| 12 | finsumvtxdg2sstep.p | . . . . . 6 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
| 13 | 12 | eqcomi 2738 | . . . . 5 ⊢ (𝐸 ↾ 𝐼) = 𝑃 |
| 14 | 13 | fveq2i 6861 | . . . 4 ⊢ (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃)) |
| 16 | notrab 4285 | . . . . . 6 ⊢ (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} | |
| 17 | 7 | difeq2i 4086 | . . . . . 6 ⊢ (dom 𝐸 ∖ 𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) |
| 18 | finsumvtxdg2ssteplem.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
| 19 | nnel 3039 | . . . . . . . . 9 ⊢ (¬ 𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑖)) | |
| 20 | 19 | bicomi 224 | . . . . . . . 8 ⊢ (𝑁 ∈ (𝐸‘𝑖) ↔ ¬ 𝑁 ∉ (𝐸‘𝑖)) |
| 21 | 20 | rabbii 3411 | . . . . . . 7 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
| 22 | 18, 21 | eqtri 2752 | . . . . . 6 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
| 23 | 16, 17, 22 | 3eqtr4i 2762 | . . . . 5 ⊢ (dom 𝐸 ∖ 𝐼) = 𝐽 |
| 24 | 23 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸 ∖ 𝐼) = 𝐽) |
| 25 | 24 | fveq2d 6862 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸 ∖ 𝐼)) = (♯‘𝐽)) |
| 26 | 15, 25 | oveq12d 7405 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼))) = ((♯‘𝑃) + (♯‘𝐽))) |
| 27 | 11, 26 | eqtrd 2764 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∉ wnel 3029 {crab 3405 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 〈cop 4595 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 + caddc 11071 ♯chash 14295 Vtxcvtx 28923 iEdgciedg 28924 UHGraphcuhgr 28983 UPGraphcupgr 29007 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-uhgr 28985 df-upgr 29009 |
| This theorem is referenced by: finsumvtxdg2sstep 29477 |
| Copyright terms: Public domain | W3C validator |