Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > finsumvtxdg2ssteplem1 | Structured version Visualization version GIF version |
Description: Lemma for finsumvtxdg2sstep 27859. (Contributed by AV, 15-Dec-2021.) |
Ref | Expression |
---|---|
finsumvtxdg2sstep.v | ⊢ 𝑉 = (Vtx‘𝐺) |
finsumvtxdg2sstep.e | ⊢ 𝐸 = (iEdg‘𝐺) |
finsumvtxdg2sstep.k | ⊢ 𝐾 = (𝑉 ∖ {𝑁}) |
finsumvtxdg2sstep.i | ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} |
finsumvtxdg2sstep.p | ⊢ 𝑃 = (𝐸 ↾ 𝐼) |
finsumvtxdg2sstep.s | ⊢ 𝑆 = 〈𝐾, 𝑃〉 |
finsumvtxdg2ssteplem.j | ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} |
Ref | Expression |
---|---|
finsumvtxdg2ssteplem1 | ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgruhgr 27415 | . . . . 5 ⊢ (𝐺 ∈ UPGraph → 𝐺 ∈ UHGraph) | |
2 | finsumvtxdg2sstep.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
3 | 2 | uhgrfun 27379 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → Fun 𝐸) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝐺 ∈ UPGraph → Fun 𝐸) |
5 | 4 | ad2antrr 722 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → Fun 𝐸) |
6 | simprr 769 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐸 ∈ Fin) | |
7 | finsumvtxdg2sstep.i | . . . . 5 ⊢ 𝐼 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)} | |
8 | 7 | ssrab3 4016 | . . . 4 ⊢ 𝐼 ⊆ dom 𝐸 |
9 | 8 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → 𝐼 ⊆ dom 𝐸) |
10 | hashreshashfun 14098 | . . 3 ⊢ ((Fun 𝐸 ∧ 𝐸 ∈ Fin ∧ 𝐼 ⊆ dom 𝐸) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) | |
11 | 5, 6, 9, 10 | syl3anc 1369 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼)))) |
12 | finsumvtxdg2sstep.p | . . . . . 6 ⊢ 𝑃 = (𝐸 ↾ 𝐼) | |
13 | 12 | eqcomi 2746 | . . . . 5 ⊢ (𝐸 ↾ 𝐼) = 𝑃 |
14 | 13 | fveq2i 6764 | . . . 4 ⊢ (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃) |
15 | 14 | a1i 11 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(𝐸 ↾ 𝐼)) = (♯‘𝑃)) |
16 | notrab 4247 | . . . . . 6 ⊢ (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} | |
17 | 7 | difeq2i 4055 | . . . . . 6 ⊢ (dom 𝐸 ∖ 𝐼) = (dom 𝐸 ∖ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ (𝐸‘𝑖)}) |
18 | finsumvtxdg2ssteplem.j | . . . . . . 7 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} | |
19 | nnel 3056 | . . . . . . . . 9 ⊢ (¬ 𝑁 ∉ (𝐸‘𝑖) ↔ 𝑁 ∈ (𝐸‘𝑖)) | |
20 | 19 | bicomi 223 | . . . . . . . 8 ⊢ (𝑁 ∈ (𝐸‘𝑖) ↔ ¬ 𝑁 ∉ (𝐸‘𝑖)) |
21 | 20 | rabbii 3402 | . . . . . . 7 ⊢ {𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ (𝐸‘𝑖)} = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
22 | 18, 21 | eqtri 2765 | . . . . . 6 ⊢ 𝐽 = {𝑖 ∈ dom 𝐸 ∣ ¬ 𝑁 ∉ (𝐸‘𝑖)} |
23 | 16, 17, 22 | 3eqtr4i 2775 | . . . . 5 ⊢ (dom 𝐸 ∖ 𝐼) = 𝐽 |
24 | 23 | a1i 11 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (dom 𝐸 ∖ 𝐼) = 𝐽) |
25 | 24 | fveq2d 6765 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘(dom 𝐸 ∖ 𝐼)) = (♯‘𝐽)) |
26 | 15, 25 | oveq12d 7278 | . 2 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → ((♯‘(𝐸 ↾ 𝐼)) + (♯‘(dom 𝐸 ∖ 𝐼))) = ((♯‘𝑃) + (♯‘𝐽))) |
27 | 11, 26 | eqtrd 2777 | 1 ⊢ (((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑉 ∈ Fin ∧ 𝐸 ∈ Fin)) → (♯‘𝐸) = ((♯‘𝑃) + (♯‘𝐽))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∉ wnel 3047 {crab 3066 ∖ cdif 3885 ⊆ wss 3888 {csn 4563 〈cop 4569 dom cdm 5585 ↾ cres 5587 Fun wfun 6417 ‘cfv 6423 (class class class)co 7260 Fincfn 8696 + caddc 10821 ♯chash 13988 Vtxcvtx 27309 iEdgciedg 27310 UHGraphcuhgr 27369 UPGraphcupgr 27393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7571 ax-cnex 10874 ax-resscn 10875 ax-1cn 10876 ax-icn 10877 ax-addcl 10878 ax-addrcl 10879 ax-mulcl 10880 ax-mulrcl 10881 ax-mulcom 10882 ax-addass 10883 ax-mulass 10884 ax-distr 10885 ax-i2m1 10886 ax-1ne0 10887 ax-1rid 10888 ax-rnegex 10889 ax-rrecex 10890 ax-cnre 10891 ax-pre-lttri 10892 ax-pre-lttrn 10893 ax-pre-ltadd 10894 ax-pre-mulgt0 10895 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3429 df-sbc 3717 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-tp 4568 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6259 df-on 6260 df-lim 6261 df-suc 6262 df-iota 6381 df-fun 6425 df-fn 6426 df-f 6427 df-f1 6428 df-fo 6429 df-f1o 6430 df-fv 6431 df-riota 7217 df-ov 7263 df-oprab 7264 df-mpo 7265 df-om 7693 df-1st 7809 df-2nd 7810 df-frecs 8073 df-wrecs 8104 df-recs 8178 df-rdg 8217 df-1o 8272 df-oadd 8276 df-er 8461 df-en 8697 df-dom 8698 df-sdom 8699 df-fin 8700 df-dju 9606 df-card 9644 df-pnf 10958 df-mnf 10959 df-xr 10960 df-ltxr 10961 df-le 10962 df-sub 11153 df-neg 11154 df-nn 11920 df-2 11982 df-n0 12180 df-xnn0 12252 df-z 12266 df-uz 12528 df-fz 13185 df-hash 13989 df-uhgr 27371 df-upgr 27395 |
This theorem is referenced by: finsumvtxdg2sstep 27859 |
Copyright terms: Public domain | W3C validator |