![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wwlksnndef | Structured version Visualization version GIF version |
Description: Conditions for WWalksN not being defined. (Contributed by Alexander van der Vekens, 30-Jul-2018.) (Revised by AV, 19-Apr-2021.) |
Ref | Expression |
---|---|
wwlksnndef | ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑁 WWalksN 𝐺) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neq0 4196 | . . 3 ⊢ (¬ (𝑁 WWalksN 𝐺) = ∅ ↔ ∃𝑤 𝑤 ∈ (𝑁 WWalksN 𝐺)) | |
2 | eqid 2779 | . . . . . 6 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
3 | 2 | wwlknbp 27328 | . . . . 5 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺))) |
4 | nnel 3083 | . . . . . . . . 9 ⊢ (¬ 𝐺 ∉ V ↔ 𝐺 ∈ V) | |
5 | nnel 3083 | . . . . . . . . 9 ⊢ (¬ 𝑁 ∉ ℕ0 ↔ 𝑁 ∈ ℕ0) | |
6 | 4, 5 | anbi12i 617 | . . . . . . . 8 ⊢ ((¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0) ↔ (𝐺 ∈ V ∧ 𝑁 ∈ ℕ0)) |
7 | 6 | biimpri 220 | . . . . . . 7 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0) → (¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0)) |
8 | 7 | 3adant3 1112 | . . . . . 6 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → (¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0)) |
9 | ioran 966 | . . . . . 6 ⊢ (¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) ↔ (¬ 𝐺 ∉ V ∧ ¬ 𝑁 ∉ ℕ0)) | |
10 | 8, 9 | sylibr 226 | . . . . 5 ⊢ ((𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑤 ∈ Word (Vtx‘𝐺)) → ¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)) |
11 | 3, 10 | syl 17 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)) |
12 | 11 | exlimiv 1889 | . . 3 ⊢ (∃𝑤 𝑤 ∈ (𝑁 WWalksN 𝐺) → ¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)) |
13 | 1, 12 | sylbi 209 | . 2 ⊢ (¬ (𝑁 WWalksN 𝐺) = ∅ → ¬ (𝐺 ∉ V ∨ 𝑁 ∉ ℕ0)) |
14 | 13 | con4i 114 | 1 ⊢ ((𝐺 ∉ V ∨ 𝑁 ∉ ℕ0) → (𝑁 WWalksN 𝐺) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 387 ∨ wo 833 ∧ w3a 1068 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ∉ wnel 3074 Vcvv 3416 ∅c0 4179 ‘cfv 6188 (class class class)co 6976 ℕ0cn0 11707 Word cword 13672 Vtxcvtx 26484 WWalksN cwwlksn 27312 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-hash 13506 df-word 13673 df-wwlks 27316 df-wwlksn 27317 |
This theorem is referenced by: wwlksnfi 27405 wwlksnfiOLD 27406 |
Copyright terms: Public domain | W3C validator |