MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Structured version   Visualization version   GIF version

Theorem nnullss 5461
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnullss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4345 . 2 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2 vex 3476 . . . . 5 𝑦 ∈ V
32snss 4788 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
42snnz 4779 . . . . 5 {𝑦} ≠ ∅
5 vsnex 5428 . . . . . 6 {𝑦} ∈ V
6 sseq1 4006 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
7 neeq1 3001 . . . . . . 7 (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅))
86, 7anbi12d 629 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅)))
95, 8spcev 3595 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
104, 9mpan2 687 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
113, 10sylbi 216 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
1211exlimiv 1931 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
131, 12sylbi 216 1 (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  wne 2938  wss 3947  c0 4321  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-sn 4628  df-pr 4630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator