![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnullss | Structured version Visualization version GIF version |
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
Ref | Expression |
---|---|
nnullss | ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4190 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
2 | vex 3412 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | snss 4586 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
4 | 2 | snnz 4579 | . . . . 5 ⊢ {𝑦} ≠ ∅ |
5 | snex 5182 | . . . . . 6 ⊢ {𝑦} ∈ V | |
6 | sseq1 3876 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
7 | neeq1 3023 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅)) | |
8 | 6, 7 | anbi12d 621 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅))) |
9 | 5, 8 | spcev 3519 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
10 | 4, 9 | mpan2 678 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
11 | 3, 10 | sylbi 209 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
12 | 11 | exlimiv 1889 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
13 | 1, 12 | sylbi 209 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ≠ wne 2961 ⊆ wss 3823 ∅c0 4172 {csn 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pr 5180 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-v 3411 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-sn 4436 df-pr 4438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |