MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Structured version   Visualization version   GIF version

Theorem nnullss 5407
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnullss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4293 . 2 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2 vex 3445 . . . . 5 𝑦 ∈ V
32snss 4733 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
42snnz 4724 . . . . 5 {𝑦} ≠ ∅
5 vsnex 5374 . . . . . 6 {𝑦} ∈ V
6 sseq1 3957 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
7 neeq1 3003 . . . . . . 7 (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅))
86, 7anbi12d 631 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅)))
95, 8spcev 3554 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
104, 9mpan2 688 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
113, 10sylbi 216 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
1211exlimiv 1932 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
131, 12sylbi 216 1 (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  wne 2940  wss 3898  c0 4269  {csn 4573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707  ax-sep 5243  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-sn 4574  df-pr 4576
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator