Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnullss | Structured version Visualization version GIF version |
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
Ref | Expression |
---|---|
nnullss | ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4280 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
2 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | snss 4719 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
4 | 2 | snnz 4712 | . . . . 5 ⊢ {𝑦} ≠ ∅ |
5 | snex 5354 | . . . . . 6 ⊢ {𝑦} ∈ V | |
6 | sseq1 3946 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
7 | neeq1 3006 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅)) | |
8 | 6, 7 | anbi12d 631 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅))) |
9 | 5, 8 | spcev 3545 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
10 | 4, 9 | mpan2 688 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
11 | 3, 10 | sylbi 216 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
12 | 11 | exlimiv 1933 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |