| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnullss | Structured version Visualization version GIF version | ||
| Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
| Ref | Expression |
|---|---|
| nnullss | ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4302 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
| 2 | vex 3441 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 3 | 2 | snss 4736 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
| 4 | 2 | snnz 4728 | . . . . 5 ⊢ {𝑦} ≠ ∅ |
| 5 | vsnex 5374 | . . . . . 6 ⊢ {𝑦} ∈ V | |
| 6 | sseq1 3956 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
| 7 | neeq1 2991 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅)) | |
| 8 | 6, 7 | anbi12d 632 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅))) |
| 9 | 5, 8 | spcev 3557 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 10 | 4, 9 | mpan2 691 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 11 | 3, 10 | sylbi 217 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 12 | 11 | exlimiv 1931 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 13 | 1, 12 | sylbi 217 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 ∅c0 4282 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |