MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Structured version   Visualization version   GIF version

Theorem nnullss 5473
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnullss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4359 . 2 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2 vex 3482 . . . . 5 𝑦 ∈ V
32snss 4790 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
42snnz 4781 . . . . 5 {𝑦} ≠ ∅
5 vsnex 5440 . . . . . 6 {𝑦} ∈ V
6 sseq1 4021 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
7 neeq1 3001 . . . . . . 7 (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅))
86, 7anbi12d 632 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅)))
95, 8spcev 3606 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
104, 9mpan2 691 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
113, 10sylbi 217 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
1211exlimiv 1928 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
131, 12sylbi 217 1 (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wss 3963  c0 4339  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-sn 4632  df-pr 4634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator