![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnullss | Structured version Visualization version GIF version |
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.) |
Ref | Expression |
---|---|
nnullss | ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4345 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦 ∈ 𝐴) | |
2 | vex 3476 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | snss 4788 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
4 | 2 | snnz 4779 | . . . . 5 ⊢ {𝑦} ≠ ∅ |
5 | vsnex 5428 | . . . . . 6 ⊢ {𝑦} ∈ V | |
6 | sseq1 4006 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ⊆ 𝐴 ↔ {𝑦} ⊆ 𝐴)) | |
7 | neeq1 3001 | . . . . . . 7 ⊢ (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅)) | |
8 | 6, 7 | anbi12d 629 | . . . . . 6 ⊢ (𝑥 = {𝑦} → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅))) |
9 | 5, 8 | spcev 3595 | . . . . 5 ⊢ (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
10 | 4, 9 | mpan2 687 | . . . 4 ⊢ ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
11 | 3, 10 | sylbi 216 | . . 3 ⊢ (𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
12 | 11 | exlimiv 1931 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
13 | 1, 12 | sylbi 216 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3947 ∅c0 4321 {csn 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-pr 4630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |