MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnullss Structured version   Visualization version   GIF version

Theorem nnullss 5331
Description: A nonempty class (even if proper) has a nonempty subset. (Contributed by NM, 23-Aug-2003.)
Assertion
Ref Expression
nnullss (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnullss
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4282 . 2 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
2 vex 3472 . . . . 5 𝑦 ∈ V
32snss 4692 . . . 4 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
42snnz 4685 . . . . 5 {𝑦} ≠ ∅
5 snex 5309 . . . . . 6 {𝑦} ∈ V
6 sseq1 3967 . . . . . . 7 (𝑥 = {𝑦} → (𝑥𝐴 ↔ {𝑦} ⊆ 𝐴))
7 neeq1 3073 . . . . . . 7 (𝑥 = {𝑦} → (𝑥 ≠ ∅ ↔ {𝑦} ≠ ∅))
86, 7anbi12d 633 . . . . . 6 (𝑥 = {𝑦} → ((𝑥𝐴𝑥 ≠ ∅) ↔ ({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅)))
95, 8spcev 3582 . . . . 5 (({𝑦} ⊆ 𝐴 ∧ {𝑦} ≠ ∅) → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
104, 9mpan2 690 . . . 4 ({𝑦} ⊆ 𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
113, 10sylbi 220 . . 3 (𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
1211exlimiv 1931 . 2 (∃𝑦 𝑦𝐴 → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
131, 12sylbi 220 1 (𝐴 ≠ ∅ → ∃𝑥(𝑥𝐴𝑥 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2114  wne 3011  wss 3908  c0 4265  {csn 4539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-v 3471  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-sn 4540  df-pr 4542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator