| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > spcev | Structured version Visualization version GIF version | ||
| Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
| Ref | Expression |
|---|---|
| spcv.1 | ⊢ 𝐴 ∈ V |
| spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | spcegv 3597 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-clel 2816 |
| This theorem is referenced by: dtruALT 5388 nnullss 5467 exss 5468 euotd 5518 opeldm 5918 elrnmpt1 5971 xpnz 6179 ssimaex 6994 fvelrn 7096 dff3 7120 exfo 7125 eufnfv 7249 elunirn 7271 fsnex 7303 f1prex 7304 foeqcnvco 7320 ffoss 7970 op1steq 8058 frxp 8151 suppimacnv 8199 seqomlem2 8491 domtr 9047 en1 9064 enfixsn 9121 ssfiALT 9214 php3 9249 php3OLD 9261 1sdomOLD 9285 isinf 9296 isinfOLD 9297 ac6sfi 9320 hartogslem1 9582 brwdom2 9613 inf0 9661 axinf2 9680 cnfcom3clem 9745 ssttrcl 9755 ttrcltr 9756 ttrclss 9760 ttrclselem2 9766 tz9.1c 9770 rankuni 9903 scott0 9926 bnd2 9933 cardprclem 10019 dfac4 10162 dfac5lem5 10167 dfac5 10169 dfac2a 10170 dfac2b 10171 kmlem2 10192 kmlem13 10203 ackbij2 10282 cfsuc 10297 cfflb 10299 cfss 10305 cfsmolem 10310 cfcoflem 10312 fin23lem32 10384 axcc2lem 10476 axcc3 10478 axdc2lem 10488 axdc3lem2 10491 axcclem 10497 brdom3 10568 brdom7disj 10571 brdom6disj 10572 axpowndlem3 10639 canthnumlem 10688 canthp1lem2 10693 inar1 10815 recmulnq 11004 ltexnq 11015 halfnq 11016 ltbtwnnq 11018 1idpr 11069 ltexprlem7 11082 reclem2pr 11088 reclem3pr 11089 sup2 12224 nnunb 12522 uzrdgfni 13999 axdc4uzlem 14024 rtrclreclem3 15099 ntrivcvgmullem 15937 fprodntriv 15978 cnso 16283 vdwapun 17012 vdwlem1 17019 vdwlem12 17030 vdwlem13 17031 isacs2 17696 equivestrcsetc 18197 psgneu 19524 efglem 19734 lmisfree 21862 toprntopon 22931 neitr 23188 cmpsublem 23407 cmpsub 23408 bwth 23418 1stcfb 23453 unisngl 23535 alexsubALTlem3 24057 alexsubALTlem4 24058 vitali 25648 mbfi1fseqlem6 25755 mbfi1flimlem 25757 aannenlem2 26371 nosupno 27748 nosupfv 27751 noinfno 27763 noinffv 27766 noseqrdgfn 28312 istrkg2ld 28468 axlowdim 28976 wlkswwlksf1o 29899 clwlkclwwlkf 30027 padct 32731 f1ocnt 32804 cycpmconjslem2 33175 locfinreflem 33839 locfinref 33840 prsdm 33913 prsrn 33914 eulerpart 34384 fineqvac 35111 satf0op 35382 prv1n 35436 fnsingle 35920 finminlem 36319 filnetlem3 36381 cnndvlem2 36539 bj-restpw 37093 bj-rest0 37094 exrecfnlem 37380 ctbssinf 37407 poimirlem2 37629 mblfinlem3 37666 mblfinlem4 37667 ismblfin 37668 itg2addnclem 37678 itg2addnc 37681 indexdom 37741 sdclem2 37749 fdc 37752 prtlem16 38870 dihglblem2aN 41295 sn-sup2 42501 eldioph2lem2 42772 dford3lem2 43039 aomclem7 43072 dfac11 43074 rclexi 43628 trclexi 43633 rtrclexi 43634 fnchoice 45034 ssnnf1octb 45199 fzisoeu 45312 stoweidlem28 46043 nnfoctbdjlem 46470 smfpimcclem 46822 funressndmafv2rn 47235 mof0 48747 setc2othin 49113 setrec1lem3 49208 setrec2lem2 49213 |
| Copyright terms: Public domain | W3C validator |