Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > spcev | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 3541 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Copyright terms: Public domain | W3C validator |