![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcev | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 3587 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 Vcvv 3473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-clel 2809 |
This theorem is referenced by: dtruALT 5386 nnullss 5462 exss 5463 euotd 5513 opeldm 5907 elrnmpt1 5957 xpnz 6158 ssimaex 6976 fvelrn 7078 dff3 7101 exfo 7106 eufnfv 7233 elunirn 7253 fsnex 7284 f1prex 7285 foeqcnvco 7301 ffoss 7936 op1steq 8023 frxp 8117 suppimacnv 8164 seqomlem2 8457 domtr 9009 en1 9027 en1OLD 9028 enfixsn 9087 ssfiALT 9180 php3 9218 php3OLD 9230 1sdomOLD 9255 isinf 9266 isinfOLD 9267 ac6sfi 9293 hartogslem1 9543 brwdom2 9574 inf0 9622 axinf2 9641 cnfcom3clem 9706 ssttrcl 9716 ttrcltr 9717 ttrclss 9721 ttrclselem2 9727 tz9.1c 9731 rankuni 9864 scott0 9887 bnd2 9894 cardprclem 9980 dfac4 10123 dfac5lem5 10128 dfac5 10129 dfac2a 10130 dfac2b 10131 kmlem2 10152 kmlem13 10163 ackbij2 10244 cfsuc 10258 cfflb 10260 cfss 10266 cfsmolem 10271 cfcoflem 10273 fin23lem32 10345 axcc2lem 10437 axcc3 10439 axdc2lem 10449 axdc3lem2 10452 axcclem 10458 brdom3 10529 brdom7disj 10532 brdom6disj 10533 axpowndlem3 10600 canthnumlem 10649 canthp1lem2 10654 inar1 10776 recmulnq 10965 ltexnq 10976 halfnq 10977 ltbtwnnq 10979 1idpr 11030 ltexprlem7 11043 reclem2pr 11049 reclem3pr 11050 sup2 12177 nnunb 12475 uzrdgfni 13930 axdc4uzlem 13955 rtrclreclem3 15014 ntrivcvgmullem 15854 fprodntriv 15893 cnso 16197 vdwapun 16914 vdwlem1 16921 vdwlem12 16932 vdwlem13 16933 isacs2 17604 equivestrcsetc 18111 psgneu 19419 efglem 19629 lmisfree 21620 toprntopon 22660 neitr 22917 cmpsublem 23136 cmpsub 23137 bwth 23147 1stcfb 23182 unisngl 23264 alexsubALTlem3 23786 alexsubALTlem4 23787 vitali 25375 mbfi1fseqlem6 25483 mbfi1flimlem 25485 aannenlem2 26092 nosupno 27457 nosupfv 27460 noinfno 27472 noinffv 27475 istrkg2ld 27993 axlowdim 28501 wlkswwlksf1o 29415 clwlkclwwlkf 29543 padct 32226 cnvoprabOLD 32227 f1ocnt 32295 cycpmconjslem2 32599 locfinreflem 33133 locfinref 33134 prsdm 33207 prsrn 33208 eulerpart 33694 fineqvac 34410 satf0op 34681 prv1n 34735 fnsingle 35210 finminlem 35519 filnetlem3 35581 cnndvlem2 35730 bj-restpw 36289 bj-rest0 36290 exrecfnlem 36576 ctbssinf 36603 poimirlem2 36806 mblfinlem3 36843 mblfinlem4 36844 ismblfin 36845 itg2addnclem 36855 itg2addnc 36858 indexdom 36918 sdclem2 36926 fdc 36929 prtlem16 38055 dihglblem2aN 40480 sn-sup2 41657 eldioph2lem2 41814 dford3lem2 42081 aomclem7 42117 dfac11 42119 rclexi 42681 trclexi 42686 rtrclexi 42687 fnchoice 44028 ssnnf1octb 44204 fzisoeu 44321 stoweidlem28 45055 nnfoctbdjlem 45482 smfpimcclem 45834 funressndmafv2rn 46242 mof0 47604 setc2othin 47776 setrec1lem3 47834 setrec2lem2 47839 |
Copyright terms: Public domain | W3C validator |