![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spcev | Structured version Visualization version GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ 𝐴 ∈ V |
spcv.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
spcev | ⊢ (𝜓 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | spcv.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | spcegv 3588 | . 2 ⊢ (𝐴 ∈ V → (𝜓 → ∃𝑥𝜑)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (𝜓 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-clel 2808 |
This theorem is referenced by: dtruALT 5387 nnullss 5463 exss 5464 euotd 5514 opeldm 5908 elrnmpt1 5958 xpnz 6159 ssimaex 6977 fvelrn 7079 dff3 7102 exfo 7107 eufnfv 7234 elunirn 7254 fsnex 7285 f1prex 7286 foeqcnvco 7302 ffoss 7936 op1steq 8023 frxp 8116 suppimacnv 8163 seqomlem2 8455 domtr 9007 en1 9025 en1OLD 9026 enfixsn 9085 ssfiALT 9178 php3 9216 php3OLD 9228 1sdomOLD 9253 isinf 9264 isinfOLD 9265 ac6sfi 9291 hartogslem1 9541 brwdom2 9572 inf0 9620 axinf2 9639 cnfcom3clem 9704 ssttrcl 9714 ttrcltr 9715 ttrclss 9719 ttrclselem2 9725 tz9.1c 9729 rankuni 9862 scott0 9885 bnd2 9892 cardprclem 9978 dfac4 10121 dfac5lem5 10126 dfac5 10127 dfac2a 10128 dfac2b 10129 kmlem2 10150 kmlem13 10161 ackbij2 10242 cfsuc 10256 cfflb 10258 cfss 10264 cfsmolem 10269 cfcoflem 10271 fin23lem32 10343 axcc2lem 10435 axcc3 10437 axdc2lem 10447 axdc3lem2 10450 axcclem 10456 brdom3 10527 brdom7disj 10530 brdom6disj 10531 axpowndlem3 10598 canthnumlem 10647 canthp1lem2 10652 inar1 10774 recmulnq 10963 ltexnq 10974 halfnq 10975 ltbtwnnq 10977 1idpr 11028 ltexprlem7 11041 reclem2pr 11047 reclem3pr 11048 sup2 12176 nnunb 12474 uzrdgfni 13929 axdc4uzlem 13954 rtrclreclem3 15013 ntrivcvgmullem 15853 fprodntriv 15892 cnso 16196 vdwapun 16913 vdwlem1 16920 vdwlem12 16931 vdwlem13 16932 isacs2 17603 equivestrcsetc 18110 psgneu 19417 efglem 19627 lmisfree 21618 toprntopon 22649 neitr 22906 cmpsublem 23125 cmpsub 23126 bwth 23136 1stcfb 23171 unisngl 23253 alexsubALTlem3 23775 alexsubALTlem4 23776 vitali 25364 mbfi1fseqlem6 25472 mbfi1flimlem 25474 aannenlem2 26076 nosupno 27440 nosupfv 27443 noinfno 27455 noinffv 27458 istrkg2ld 27976 axlowdim 28484 wlkswwlksf1o 29398 clwlkclwwlkf 29526 padct 32209 cnvoprabOLD 32210 f1ocnt 32278 cycpmconjslem2 32582 locfinreflem 33116 locfinref 33117 prsdm 33190 prsrn 33191 eulerpart 33677 fineqvac 34393 satf0op 34664 prv1n 34718 fnsingle 35193 finminlem 35508 filnetlem3 35570 cnndvlem2 35719 bj-restpw 36278 bj-rest0 36279 exrecfnlem 36565 ctbssinf 36592 poimirlem2 36795 mblfinlem3 36832 mblfinlem4 36833 ismblfin 36834 itg2addnclem 36844 itg2addnc 36847 indexdom 36907 sdclem2 36915 fdc 36918 prtlem16 38044 dihglblem2aN 40469 sn-sup2 41646 eldioph2lem2 41803 dford3lem2 42070 aomclem7 42106 dfac11 42108 rclexi 42670 trclexi 42675 rtrclexi 42676 fnchoice 44017 ssnnf1octb 44193 fzisoeu 44310 stoweidlem28 45044 nnfoctbdjlem 45471 smfpimcclem 45823 funressndmafv2rn 46231 mof0 47593 setc2othin 47765 setrec1lem3 47823 setrec2lem2 47828 |
Copyright terms: Public domain | W3C validator |