![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4787). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4787 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3955 df-ss 3965 df-sn 4629 |
This theorem is referenced by: tpss 4838 sspwb 5449 nnullss 5462 exss 5463 pwssun 5571 fvimacnvi 7053 fvimacnv 7054 fvimacnvALT 7058 fnressn 7155 limensuci 9152 domunfican 9319 finsschain 9358 epfrs 9725 tc2 9736 tcsni 9737 dju1dif 10166 fpwwe2lem12 10636 wunfi 10715 uniwun 10734 un0mulcl 12505 nn0ssz 12580 xrinfmss 13288 hashbclem 14410 hashf1lem1 14414 hashf1lem1OLD 14415 hashf1lem2 14416 fsum2dlem 15715 fsumabs 15746 fsumrlim 15756 fsumo1 15757 fsumiun 15766 incexclem 15781 fprod2dlem 15923 lcmfunsnlem 16577 lcmfun 16581 coprmprod 16597 coprmproddvdslem 16598 ramcl2 16948 0ram 16952 strfv 17136 imasaddfnlem 17473 imasaddvallem 17474 acsfn1 17604 drsdirfi 18257 sylow2a 19486 gsumpt 19829 dprdfadd 19889 ablfac1eulem 19941 pgpfaclem1 19950 acsfn1p 20414 rsp1 20848 mplcoe1 21591 mplcoe5 21594 mdetunilem9 22121 opnnei 22623 iscnp4 22766 cnpnei 22767 hausnei2 22856 fiuncmp 22907 llycmpkgen2 23053 1stckgen 23057 ptbasfi 23084 xkoccn 23122 xkoptsub 23157 ptcmpfi 23316 cnextcn 23570 tsmsid 23643 ustuqtop3 23747 utopreg 23756 prdsdsf 23872 prdsmet 23875 prdsbl 23999 fsumcn 24385 itgfsum 25343 dvmptfsum 25491 elply2 25709 elplyd 25715 ply1term 25717 ply0 25721 plymullem 25729 jensenlem1 26488 jensenlem2 26489 frcond3 29519 h1de2bi 30802 spansni 30805 gsumle 32237 gsumvsca1 32366 gsumvsca2 32367 1fldgenq 32407 mxidlirredi 32582 extdg1id 32737 ordtconnlem1 32899 cntnevol 33221 eulerpartgbij 33366 breprexpnat 33641 cvmlift2lem1 34288 cvmlift2lem12 34300 dfon2lem7 34756 bj-tagss 35856 lindsenlbs 36478 matunitlindflem1 36479 divrngidl 36891 isfldidl 36931 ispridlc 36933 pclfinclN 38816 osumcllem10N 38831 pexmidlem7N 38842 clsk1indlem4 42785 clsk1indlem1 42786 fourierdlem62 44874 pzriprnglem4 46798 |
Copyright terms: Public domain | W3C validator |