Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4715). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4715 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-sn 4559 |
This theorem is referenced by: tpss 4765 snelpw 5355 sspwb 5359 nnullss 5371 exss 5372 pwssun 5476 fvimacnvi 6911 fvimacnv 6912 fvimacnvALT 6916 fnressn 7012 limensuci 8889 domunfican 9017 finsschain 9056 epfrs 9420 tc2 9431 tcsni 9432 dju1dif 9859 fpwwe2lem12 10329 wunfi 10408 uniwun 10427 un0mulcl 12197 nn0ssz 12271 xrinfmss 12973 hashbclem 14092 hashf1lem1 14096 hashf1lem1OLD 14097 hashf1lem2 14098 fsum2dlem 15410 fsumabs 15441 fsumrlim 15451 fsumo1 15452 fsumiun 15461 incexclem 15476 fprod2dlem 15618 lcmfunsnlem 16274 lcmfun 16278 coprmprod 16294 coprmproddvdslem 16295 ramcl2 16645 0ram 16649 strfv 16833 imasaddfnlem 17156 imasaddvallem 17157 acsfn1 17287 drsdirfi 17938 sylow2a 19139 gsumpt 19478 dprdfadd 19538 ablfac1eulem 19590 pgpfaclem1 19599 acsfn1p 19982 rsp1 20408 mplcoe1 21148 mplcoe5 21151 mdetunilem9 21677 opnnei 22179 iscnp4 22322 cnpnei 22323 hausnei2 22412 fiuncmp 22463 llycmpkgen2 22609 1stckgen 22613 ptbasfi 22640 xkoccn 22678 xkoptsub 22713 ptcmpfi 22872 cnextcn 23126 tsmsid 23199 ustuqtop3 23303 utopreg 23312 prdsdsf 23428 prdsmet 23431 prdsbl 23553 fsumcn 23939 itgfsum 24896 dvmptfsum 25044 elply2 25262 elplyd 25268 ply1term 25270 ply0 25274 plymullem 25282 jensenlem1 26041 jensenlem2 26042 frcond3 28534 h1de2bi 29817 spansni 29820 gsumle 31252 gsumvsca1 31381 gsumvsca2 31382 extdg1id 31640 ordtconnlem1 31776 cntnevol 32096 eulerpartgbij 32239 breprexpnat 32514 cvmlift2lem1 33164 cvmlift2lem12 33176 dfon2lem7 33671 bj-tagss 35097 lindsenlbs 35699 matunitlindflem1 35700 divrngidl 36113 isfldidl 36153 ispridlc 36155 pclfinclN 37891 osumcllem10N 37906 pexmidlem7N 37917 clsk1indlem4 41543 clsk1indlem1 41544 fourierdlem62 43599 |
Copyright terms: Public domain | W3C validator |