![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4787). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4787 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 Vcvv 3477 ⊆ wss 3962 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-sn 4631 |
This theorem is referenced by: tpss 4841 sspwb 5459 nnullss 5472 exss 5473 pwssun 5579 fvimacnvi 7071 fvimacnv 7072 fvimacnvALT 7076 fnressn 7177 limensuci 9191 domunfican 9358 finsschain 9396 epfrs 9768 tc2 9779 tcsni 9780 dju1dif 10210 fpwwe2lem12 10679 wunfi 10758 uniwun 10777 un0mulcl 12557 nn0ssz 12633 xrinfmss 13348 hashbclem 14487 hashf1lem1 14490 hashf1lem2 14491 fsum2dlem 15802 fsumabs 15833 fsumrlim 15843 fsumo1 15844 fsumiun 15853 incexclem 15868 fprod2dlem 16012 lcmfunsnlem 16674 lcmfun 16678 coprmprod 16694 coprmproddvdslem 16695 ramcl2 17049 0ram 17053 strfv 17237 imasaddfnlem 17574 imasaddvallem 17575 acsfn1 17705 drsdirfi 18362 sylow2a 19651 gsumpt 19994 dprdfadd 20054 ablfac1eulem 20106 pgpfaclem1 20115 acsfn1p 20816 rsp1 21264 pzriprnglem4 21512 mplcoe1 22072 mplcoe5 22075 mdetunilem9 22641 opnnei 23143 iscnp4 23286 cnpnei 23287 hausnei2 23376 fiuncmp 23427 llycmpkgen2 23573 1stckgen 23577 ptbasfi 23604 xkoccn 23642 xkoptsub 23677 ptcmpfi 23836 cnextcn 24090 tsmsid 24163 ustuqtop3 24267 utopreg 24276 prdsdsf 24392 prdsmet 24395 prdsbl 24519 fsumcn 24907 itgfsum 25876 dvmptfsum 26027 elply2 26249 elplyd 26255 ply1term 26257 ply0 26261 plymullem 26269 jensenlem1 27044 jensenlem2 27045 frcond3 30297 h1de2bi 31582 spansni 31585 gsumle 33083 gsumvsca1 33214 gsumvsca2 33215 1fldgenq 33303 unitprodclb 33396 mxidlirredi 33478 extdg1id 33690 ordtconnlem1 33884 cntnevol 34208 eulerpartgbij 34353 breprexpnat 34627 cvmlift2lem1 35286 cvmlift2lem12 35298 dfon2lem7 35770 bj-tagss 36962 lindsenlbs 37601 matunitlindflem1 37602 divrngidl 38014 isfldidl 38054 ispridlc 38056 pclfinclN 39932 osumcllem10N 39947 pexmidlem7N 39958 readvrec 42370 clsk1indlem4 44033 clsk1indlem1 44034 fourierdlem62 46123 |
Copyright terms: Public domain | W3C validator |