| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4735). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 4735 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-ss 3915 df-sn 4576 |
| This theorem is referenced by: tpss 4788 sspwb 5392 nnullss 5405 exss 5406 pwssun 5511 fvimacnvi 6991 fvimacnv 6992 fvimacnvALT 6996 fnressn 7097 limensuci 9073 domunfican 9213 finsschain 9250 epfrs 9628 tc2 9637 tcsni 9638 dju1dif 10071 fpwwe2lem12 10540 wunfi 10619 uniwun 10638 un0mulcl 12422 nn0ssz 12498 xrinfmss 13211 hashbclem 14361 hashf1lem1 14364 hashf1lem2 14365 fsum2dlem 15679 fsumabs 15710 fsumrlim 15720 fsumo1 15721 fsumiun 15730 incexclem 15745 fprod2dlem 15889 lcmfunsnlem 16554 lcmfun 16558 coprmprod 16574 coprmproddvdslem 16575 ramcl2 16930 0ram 16934 strfv 17116 imasaddfnlem 17434 imasaddvallem 17435 acsfn1 17569 drsdirfi 18213 sylow2a 19533 gsumpt 19876 dprdfadd 19936 ablfac1eulem 19988 pgpfaclem1 19997 gsumle 20059 acsfn1p 20716 rsp1 21176 pzriprnglem4 21423 mplcoe1 21973 mplcoe5 21976 mdetunilem9 22536 opnnei 23036 iscnp4 23179 cnpnei 23180 hausnei2 23269 fiuncmp 23320 llycmpkgen2 23466 1stckgen 23470 ptbasfi 23497 xkoccn 23535 xkoptsub 23570 ptcmpfi 23729 cnextcn 23983 tsmsid 24056 ustuqtop3 24159 utopreg 24168 prdsdsf 24283 prdsmet 24286 prdsbl 24407 fsumcn 24789 itgfsum 25756 dvmptfsum 25907 elply2 26129 elplyd 26135 ply1term 26137 ply0 26141 plymullem 26149 jensenlem1 26925 jensenlem2 26926 frcond3 30251 h1de2bi 31536 spansni 31539 gsumvsca1 33202 gsumvsca2 33203 1fldgenq 33295 unitprodclb 33361 mxidlirredi 33443 extdg1id 33700 ordtconnlem1 33958 cntnevol 34262 eulerpartgbij 34406 breprexpnat 34668 cvmlift2lem1 35367 cvmlift2lem12 35379 dfon2lem7 35852 bj-tagss 37045 lindsenlbs 37676 matunitlindflem1 37677 divrngidl 38089 isfldidl 38129 ispridlc 38131 pclfinclN 40070 osumcllem10N 40085 pexmidlem7N 40096 clsk1indlem4 44162 clsk1indlem1 44163 fourierdlem62 46291 nthrucw 47009 |
| Copyright terms: Public domain | W3C validator |