| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4736). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 4736 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3902 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3919 df-sn 4577 |
| This theorem is referenced by: tpss 4789 sspwb 5390 nnullss 5402 exss 5403 pwssun 5508 fvimacnvi 6985 fvimacnv 6986 fvimacnvALT 6990 fnressn 7091 limensuci 9066 domunfican 9206 finsschain 9243 epfrs 9621 tc2 9630 tcsni 9631 dju1dif 10064 fpwwe2lem12 10533 wunfi 10612 uniwun 10631 un0mulcl 12415 nn0ssz 12491 xrinfmss 13209 hashbclem 14359 hashf1lem1 14362 hashf1lem2 14363 fsum2dlem 15677 fsumabs 15708 fsumrlim 15718 fsumo1 15719 fsumiun 15728 incexclem 15743 fprod2dlem 15887 lcmfunsnlem 16552 lcmfun 16556 coprmprod 16572 coprmproddvdslem 16573 ramcl2 16928 0ram 16932 strfv 17114 imasaddfnlem 17432 imasaddvallem 17433 acsfn1 17567 drsdirfi 18211 sylow2a 19532 gsumpt 19875 dprdfadd 19935 ablfac1eulem 19987 pgpfaclem1 19996 gsumle 20058 acsfn1p 20715 rsp1 21175 pzriprnglem4 21422 mplcoe1 21973 mplcoe5 21976 mdetunilem9 22536 opnnei 23036 iscnp4 23179 cnpnei 23180 hausnei2 23269 fiuncmp 23320 llycmpkgen2 23466 1stckgen 23470 ptbasfi 23497 xkoccn 23535 xkoptsub 23570 ptcmpfi 23729 cnextcn 23983 tsmsid 24056 ustuqtop3 24159 utopreg 24168 prdsdsf 24283 prdsmet 24286 prdsbl 24407 fsumcn 24789 itgfsum 25756 dvmptfsum 25907 elply2 26129 elplyd 26135 ply1term 26137 ply0 26141 plymullem 26149 jensenlem1 26925 jensenlem2 26926 frcond3 30247 h1de2bi 31532 spansni 31535 gsumvsca1 33193 gsumvsca2 33194 1fldgenq 33286 unitprodclb 33352 mxidlirredi 33434 extdg1id 33677 ordtconnlem1 33935 cntnevol 34239 eulerpartgbij 34383 breprexpnat 34645 cvmlift2lem1 35344 cvmlift2lem12 35356 dfon2lem7 35829 bj-tagss 37020 lindsenlbs 37661 matunitlindflem1 37662 divrngidl 38074 isfldidl 38114 ispridlc 38116 pclfinclN 39995 osumcllem10N 40010 pexmidlem7N 40021 clsk1indlem4 44083 clsk1indlem1 44084 fourierdlem62 46212 |
| Copyright terms: Public domain | W3C validator |