| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4737). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 4737 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-sn 4580 |
| This theorem is referenced by: tpss 4791 sspwb 5396 nnullss 5409 exss 5410 pwssun 5515 fvimacnvi 6990 fvimacnv 6991 fvimacnvALT 6995 fnressn 7096 limensuci 9077 domunfican 9230 finsschain 9268 epfrs 9646 tc2 9657 tcsni 9658 dju1dif 10086 fpwwe2lem12 10555 wunfi 10634 uniwun 10653 un0mulcl 12436 nn0ssz 12512 xrinfmss 13230 hashbclem 14377 hashf1lem1 14380 hashf1lem2 14381 fsum2dlem 15695 fsumabs 15726 fsumrlim 15736 fsumo1 15737 fsumiun 15746 incexclem 15761 fprod2dlem 15905 lcmfunsnlem 16570 lcmfun 16574 coprmprod 16590 coprmproddvdslem 16591 ramcl2 16946 0ram 16950 strfv 17132 imasaddfnlem 17450 imasaddvallem 17451 acsfn1 17585 drsdirfi 18229 sylow2a 19516 gsumpt 19859 dprdfadd 19919 ablfac1eulem 19971 pgpfaclem1 19980 gsumle 20042 acsfn1p 20702 rsp1 21162 pzriprnglem4 21409 mplcoe1 21960 mplcoe5 21963 mdetunilem9 22523 opnnei 23023 iscnp4 23166 cnpnei 23167 hausnei2 23256 fiuncmp 23307 llycmpkgen2 23453 1stckgen 23457 ptbasfi 23484 xkoccn 23522 xkoptsub 23557 ptcmpfi 23716 cnextcn 23970 tsmsid 24043 ustuqtop3 24147 utopreg 24156 prdsdsf 24271 prdsmet 24274 prdsbl 24395 fsumcn 24777 itgfsum 25744 dvmptfsum 25895 elply2 26117 elplyd 26123 ply1term 26125 ply0 26129 plymullem 26137 jensenlem1 26913 jensenlem2 26914 frcond3 30231 h1de2bi 31516 spansni 31519 gsumvsca1 33181 gsumvsca2 33182 1fldgenq 33274 unitprodclb 33339 mxidlirredi 33421 extdg1id 33640 ordtconnlem1 33893 cntnevol 34197 eulerpartgbij 34342 breprexpnat 34604 cvmlift2lem1 35277 cvmlift2lem12 35289 dfon2lem7 35765 bj-tagss 36956 lindsenlbs 37597 matunitlindflem1 37598 divrngidl 38010 isfldidl 38050 ispridlc 38052 pclfinclN 39932 osumcllem10N 39947 pexmidlem7N 39958 clsk1indlem4 44020 clsk1indlem1 44021 fourierdlem62 46153 |
| Copyright terms: Public domain | W3C validator |