![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4788). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4788 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 {csn 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-sn 4630 |
This theorem is referenced by: tpss 4839 sspwb 5450 nnullss 5463 exss 5464 pwssun 5572 fvimacnvi 7054 fvimacnv 7055 fvimacnvALT 7059 fnressn 7156 limensuci 9153 domunfican 9320 finsschain 9359 epfrs 9726 tc2 9737 tcsni 9738 dju1dif 10167 fpwwe2lem12 10637 wunfi 10716 uniwun 10735 un0mulcl 12506 nn0ssz 12581 xrinfmss 13289 hashbclem 14411 hashf1lem1 14415 hashf1lem1OLD 14416 hashf1lem2 14417 fsum2dlem 15716 fsumabs 15747 fsumrlim 15757 fsumo1 15758 fsumiun 15767 incexclem 15782 fprod2dlem 15924 lcmfunsnlem 16578 lcmfun 16582 coprmprod 16598 coprmproddvdslem 16599 ramcl2 16949 0ram 16953 strfv 17137 imasaddfnlem 17474 imasaddvallem 17475 acsfn1 17605 drsdirfi 18258 sylow2a 19487 gsumpt 19830 dprdfadd 19890 ablfac1eulem 19942 pgpfaclem1 19951 acsfn1p 20415 rsp1 20849 mplcoe1 21592 mplcoe5 21595 mdetunilem9 22122 opnnei 22624 iscnp4 22767 cnpnei 22768 hausnei2 22857 fiuncmp 22908 llycmpkgen2 23054 1stckgen 23058 ptbasfi 23085 xkoccn 23123 xkoptsub 23158 ptcmpfi 23317 cnextcn 23571 tsmsid 23644 ustuqtop3 23748 utopreg 23757 prdsdsf 23873 prdsmet 23876 prdsbl 24000 fsumcn 24386 itgfsum 25344 dvmptfsum 25492 elply2 25710 elplyd 25716 ply1term 25718 ply0 25722 plymullem 25730 jensenlem1 26491 jensenlem2 26492 frcond3 29522 h1de2bi 30807 spansni 30810 gsumle 32242 gsumvsca1 32371 gsumvsca2 32372 1fldgenq 32412 mxidlirredi 32587 extdg1id 32742 ordtconnlem1 32904 cntnevol 33226 eulerpartgbij 33371 breprexpnat 33646 cvmlift2lem1 34293 cvmlift2lem12 34305 dfon2lem7 34761 bj-tagss 35861 lindsenlbs 36483 matunitlindflem1 36484 divrngidl 36896 isfldidl 36936 ispridlc 36938 pclfinclN 38821 osumcllem10N 38836 pexmidlem7N 38847 clsk1indlem4 42795 clsk1indlem1 42796 fourierdlem62 44884 pzriprnglem4 46808 |
Copyright terms: Public domain | W3C validator |