Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4718). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4718 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-sn 4562 |
This theorem is referenced by: tpss 4768 snelpw 5361 sspwb 5365 nnullss 5377 exss 5378 pwssun 5485 fvimacnvi 6929 fvimacnv 6930 fvimacnvALT 6934 fnressn 7030 limensuci 8940 domunfican 9087 finsschain 9126 epfrs 9489 tc2 9500 tcsni 9501 dju1dif 9928 fpwwe2lem12 10398 wunfi 10477 uniwun 10496 un0mulcl 12267 nn0ssz 12341 xrinfmss 13044 hashbclem 14164 hashf1lem1 14168 hashf1lem1OLD 14169 hashf1lem2 14170 fsum2dlem 15482 fsumabs 15513 fsumrlim 15523 fsumo1 15524 fsumiun 15533 incexclem 15548 fprod2dlem 15690 lcmfunsnlem 16346 lcmfun 16350 coprmprod 16366 coprmproddvdslem 16367 ramcl2 16717 0ram 16721 strfv 16905 imasaddfnlem 17239 imasaddvallem 17240 acsfn1 17370 drsdirfi 18023 sylow2a 19224 gsumpt 19563 dprdfadd 19623 ablfac1eulem 19675 pgpfaclem1 19684 acsfn1p 20067 rsp1 20495 mplcoe1 21238 mplcoe5 21241 mdetunilem9 21769 opnnei 22271 iscnp4 22414 cnpnei 22415 hausnei2 22504 fiuncmp 22555 llycmpkgen2 22701 1stckgen 22705 ptbasfi 22732 xkoccn 22770 xkoptsub 22805 ptcmpfi 22964 cnextcn 23218 tsmsid 23291 ustuqtop3 23395 utopreg 23404 prdsdsf 23520 prdsmet 23523 prdsbl 23647 fsumcn 24033 itgfsum 24991 dvmptfsum 25139 elply2 25357 elplyd 25363 ply1term 25365 ply0 25369 plymullem 25377 jensenlem1 26136 jensenlem2 26137 frcond3 28633 h1de2bi 29916 spansni 29919 gsumle 31350 gsumvsca1 31479 gsumvsca2 31480 extdg1id 31738 ordtconnlem1 31874 cntnevol 32196 eulerpartgbij 32339 breprexpnat 32614 cvmlift2lem1 33264 cvmlift2lem12 33276 dfon2lem7 33765 bj-tagss 35170 lindsenlbs 35772 matunitlindflem1 35773 divrngidl 36186 isfldidl 36226 ispridlc 36228 pclfinclN 37964 osumcllem10N 37979 pexmidlem7N 37990 clsk1indlem4 41654 clsk1indlem1 41655 fourierdlem62 43709 |
Copyright terms: Public domain | W3C validator |