![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4808). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4808 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-sn 4649 |
This theorem is referenced by: tpss 4862 sspwb 5469 nnullss 5482 exss 5483 pwssun 5590 fvimacnvi 7085 fvimacnv 7086 fvimacnvALT 7090 fnressn 7192 limensuci 9219 domunfican 9389 finsschain 9429 epfrs 9800 tc2 9811 tcsni 9812 dju1dif 10242 fpwwe2lem12 10711 wunfi 10790 uniwun 10809 un0mulcl 12587 nn0ssz 12662 xrinfmss 13372 hashbclem 14501 hashf1lem1 14504 hashf1lem2 14505 fsum2dlem 15818 fsumabs 15849 fsumrlim 15859 fsumo1 15860 fsumiun 15869 incexclem 15884 fprod2dlem 16028 lcmfunsnlem 16688 lcmfun 16692 coprmprod 16708 coprmproddvdslem 16709 ramcl2 17063 0ram 17067 strfv 17251 imasaddfnlem 17588 imasaddvallem 17589 acsfn1 17719 drsdirfi 18375 sylow2a 19661 gsumpt 20004 dprdfadd 20064 ablfac1eulem 20116 pgpfaclem1 20125 acsfn1p 20822 rsp1 21270 pzriprnglem4 21518 mplcoe1 22078 mplcoe5 22081 mdetunilem9 22647 opnnei 23149 iscnp4 23292 cnpnei 23293 hausnei2 23382 fiuncmp 23433 llycmpkgen2 23579 1stckgen 23583 ptbasfi 23610 xkoccn 23648 xkoptsub 23683 ptcmpfi 23842 cnextcn 24096 tsmsid 24169 ustuqtop3 24273 utopreg 24282 prdsdsf 24398 prdsmet 24401 prdsbl 24525 fsumcn 24913 itgfsum 25882 dvmptfsum 26033 elply2 26255 elplyd 26261 ply1term 26263 ply0 26267 plymullem 26275 jensenlem1 27048 jensenlem2 27049 frcond3 30301 h1de2bi 31586 spansni 31589 gsumle 33074 gsumvsca1 33205 gsumvsca2 33206 1fldgenq 33289 unitprodclb 33382 mxidlirredi 33464 extdg1id 33676 ordtconnlem1 33870 cntnevol 34192 eulerpartgbij 34337 breprexpnat 34611 cvmlift2lem1 35270 cvmlift2lem12 35282 dfon2lem7 35753 bj-tagss 36946 lindsenlbs 37575 matunitlindflem1 37576 divrngidl 37988 isfldidl 38028 ispridlc 38030 pclfinclN 39907 osumcllem10N 39922 pexmidlem7N 39933 clsk1indlem4 44006 clsk1indlem1 44007 fourierdlem62 46089 |
Copyright terms: Public domain | W3C validator |