| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4764). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 4764 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-sn 4607 |
| This theorem is referenced by: tpss 4818 sspwb 5429 nnullss 5442 exss 5443 pwssun 5550 fvimacnvi 7047 fvimacnv 7048 fvimacnvALT 7052 fnressn 7153 limensuci 9172 domunfican 9338 finsschain 9376 epfrs 9750 tc2 9761 tcsni 9762 dju1dif 10192 fpwwe2lem12 10661 wunfi 10740 uniwun 10759 un0mulcl 12540 nn0ssz 12616 xrinfmss 13331 hashbclem 14475 hashf1lem1 14478 hashf1lem2 14479 fsum2dlem 15791 fsumabs 15822 fsumrlim 15832 fsumo1 15833 fsumiun 15842 incexclem 15857 fprod2dlem 16001 lcmfunsnlem 16665 lcmfun 16669 coprmprod 16685 coprmproddvdslem 16686 ramcl2 17041 0ram 17045 strfv 17227 imasaddfnlem 17547 imasaddvallem 17548 acsfn1 17678 drsdirfi 18322 sylow2a 19605 gsumpt 19948 dprdfadd 20008 ablfac1eulem 20060 pgpfaclem1 20069 acsfn1p 20764 rsp1 21203 pzriprnglem4 21450 mplcoe1 22000 mplcoe5 22003 mdetunilem9 22563 opnnei 23063 iscnp4 23206 cnpnei 23207 hausnei2 23296 fiuncmp 23347 llycmpkgen2 23493 1stckgen 23497 ptbasfi 23524 xkoccn 23562 xkoptsub 23597 ptcmpfi 23756 cnextcn 24010 tsmsid 24083 ustuqtop3 24187 utopreg 24196 prdsdsf 24311 prdsmet 24314 prdsbl 24435 fsumcn 24817 itgfsum 25785 dvmptfsum 25936 elply2 26158 elplyd 26164 ply1term 26166 ply0 26170 plymullem 26178 jensenlem1 26954 jensenlem2 26955 frcond3 30255 h1de2bi 31540 spansni 31543 gsumle 33097 gsumvsca1 33228 gsumvsca2 33229 1fldgenq 33321 unitprodclb 33409 mxidlirredi 33491 extdg1id 33712 ordtconnlem1 33960 cntnevol 34264 eulerpartgbij 34409 breprexpnat 34671 cvmlift2lem1 35329 cvmlift2lem12 35341 dfon2lem7 35812 bj-tagss 37003 lindsenlbs 37644 matunitlindflem1 37645 divrngidl 38057 isfldidl 38097 ispridlc 38099 pclfinclN 39974 osumcllem10N 39989 pexmidlem7N 40000 clsk1indlem4 44043 clsk1indlem1 44044 fourierdlem62 46177 |
| Copyright terms: Public domain | W3C validator |