Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version |
Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4724). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
snss.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | snssg 4724 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 {csn 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-ss 3909 df-sn 4568 |
This theorem is referenced by: tpss 4774 snelpw 5364 sspwb 5368 nnullss 5380 exss 5381 pwssun 5485 fvimacnvi 6924 fvimacnv 6925 fvimacnvALT 6929 fnressn 7025 limensuci 8920 domunfican 9063 finsschain 9102 epfrs 9487 tc2 9498 tcsni 9499 dju1dif 9927 fpwwe2lem12 10397 wunfi 10476 uniwun 10495 un0mulcl 12265 nn0ssz 12339 xrinfmss 13041 hashbclem 14160 hashf1lem1 14164 hashf1lem1OLD 14165 hashf1lem2 14166 fsum2dlem 15478 fsumabs 15509 fsumrlim 15519 fsumo1 15520 fsumiun 15529 incexclem 15544 fprod2dlem 15686 lcmfunsnlem 16342 lcmfun 16346 coprmprod 16362 coprmproddvdslem 16363 ramcl2 16713 0ram 16717 strfv 16901 imasaddfnlem 17235 imasaddvallem 17236 acsfn1 17366 drsdirfi 18019 sylow2a 19220 gsumpt 19559 dprdfadd 19619 ablfac1eulem 19671 pgpfaclem1 19680 acsfn1p 20063 rsp1 20491 mplcoe1 21234 mplcoe5 21237 mdetunilem9 21765 opnnei 22267 iscnp4 22410 cnpnei 22411 hausnei2 22500 fiuncmp 22551 llycmpkgen2 22697 1stckgen 22701 ptbasfi 22728 xkoccn 22766 xkoptsub 22801 ptcmpfi 22960 cnextcn 23214 tsmsid 23287 ustuqtop3 23391 utopreg 23400 prdsdsf 23516 prdsmet 23519 prdsbl 23643 fsumcn 24029 itgfsum 24987 dvmptfsum 25135 elply2 25353 elplyd 25359 ply1term 25361 ply0 25365 plymullem 25373 jensenlem1 26132 jensenlem2 26133 frcond3 28627 h1de2bi 29910 spansni 29913 gsumle 31344 gsumvsca1 31473 gsumvsca2 31474 extdg1id 31732 ordtconnlem1 31868 cntnevol 32190 eulerpartgbij 32333 breprexpnat 32608 cvmlift2lem1 33258 cvmlift2lem12 33270 dfon2lem7 33759 bj-tagss 35164 lindsenlbs 35766 matunitlindflem1 35767 divrngidl 36180 isfldidl 36220 ispridlc 36222 pclfinclN 37958 osumcllem10N 37973 pexmidlem7N 37984 clsk1indlem4 41622 clsk1indlem1 41623 fourierdlem62 43678 |
Copyright terms: Public domain | W3C validator |