| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snss | Structured version Visualization version GIF version | ||
| Description: The singleton of an element of a class is a subset of the class (inference form of snssg 4747). Theorem 7.4 of [Quine] p. 49. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snss.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| snss | ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snss.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | snssg 4747 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ {𝐴} ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-sn 4590 |
| This theorem is referenced by: tpss 4801 sspwb 5409 nnullss 5422 exss 5423 pwssun 5530 fvimacnvi 7024 fvimacnv 7025 fvimacnvALT 7029 fnressn 7130 limensuci 9117 domunfican 9272 finsschain 9310 epfrs 9684 tc2 9695 tcsni 9696 dju1dif 10126 fpwwe2lem12 10595 wunfi 10674 uniwun 10693 un0mulcl 12476 nn0ssz 12552 xrinfmss 13270 hashbclem 14417 hashf1lem1 14420 hashf1lem2 14421 fsum2dlem 15736 fsumabs 15767 fsumrlim 15777 fsumo1 15778 fsumiun 15787 incexclem 15802 fprod2dlem 15946 lcmfunsnlem 16611 lcmfun 16615 coprmprod 16631 coprmproddvdslem 16632 ramcl2 16987 0ram 16991 strfv 17173 imasaddfnlem 17491 imasaddvallem 17492 acsfn1 17622 drsdirfi 18266 sylow2a 19549 gsumpt 19892 dprdfadd 19952 ablfac1eulem 20004 pgpfaclem1 20013 acsfn1p 20708 rsp1 21147 pzriprnglem4 21394 mplcoe1 21944 mplcoe5 21947 mdetunilem9 22507 opnnei 23007 iscnp4 23150 cnpnei 23151 hausnei2 23240 fiuncmp 23291 llycmpkgen2 23437 1stckgen 23441 ptbasfi 23468 xkoccn 23506 xkoptsub 23541 ptcmpfi 23700 cnextcn 23954 tsmsid 24027 ustuqtop3 24131 utopreg 24140 prdsdsf 24255 prdsmet 24258 prdsbl 24379 fsumcn 24761 itgfsum 25728 dvmptfsum 25879 elply2 26101 elplyd 26107 ply1term 26109 ply0 26113 plymullem 26121 jensenlem1 26897 jensenlem2 26898 frcond3 30198 h1de2bi 31483 spansni 31486 gsumle 33038 gsumvsca1 33179 gsumvsca2 33180 1fldgenq 33272 unitprodclb 33360 mxidlirredi 33442 extdg1id 33661 ordtconnlem1 33914 cntnevol 34218 eulerpartgbij 34363 breprexpnat 34625 cvmlift2lem1 35289 cvmlift2lem12 35301 dfon2lem7 35777 bj-tagss 36968 lindsenlbs 37609 matunitlindflem1 37610 divrngidl 38022 isfldidl 38062 ispridlc 38064 pclfinclN 39944 osumcllem10N 39959 pexmidlem7N 39970 clsk1indlem4 44033 clsk1indlem1 44034 fourierdlem62 46166 |
| Copyright terms: Public domain | W3C validator |