| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euabex | Structured version Visualization version GIF version | ||
| Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2571 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | moabex 5419 | . 2 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃*wmo 2531 ∃!weu 2561 {cab 2707 Vcvv 3447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: tfsconcatun 43326 sprval 47477 prprval 47512 |
| Copyright terms: Public domain | W3C validator |