| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > euabex | Structured version Visualization version GIF version | ||
| Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
| Ref | Expression |
|---|---|
| euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eumo 2573 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
| 2 | moabex 5397 | . 2 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∃*wmo 2533 ∃!weu 2563 {cab 2709 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-un 3902 df-in 3904 df-ss 3914 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: fineqvnttrclse 35144 tfsconcatun 43440 sprval 47589 prprval 47624 |
| Copyright terms: Public domain | W3C validator |