MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabex Structured version   Visualization version   GIF version

Theorem euabex 5481
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
StepHypRef Expression
1 eumo 2581 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 moabex 5479 . 2 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
31, 2syl 17 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ∃*wmo 2541  ∃!weu 2571  {cab 2717  Vcvv 3488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-un 3981  df-in 3983  df-ss 3993  df-sn 4649  df-pr 4651
This theorem is referenced by:  tfsconcatun  43299  sprval  47353  prprval  47388
  Copyright terms: Public domain W3C validator