MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabex Structured version   Visualization version   GIF version

Theorem euabex 5163
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
StepHypRef Expression
1 eumo 2598 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 moabex 5161 . 2 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
31, 2syl 17 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  ∃*wmo 2549  ∃!weu 2586  {cab 2763  Vcvv 3398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-sn 4399  df-pr 4401
This theorem is referenced by:  sprval  42428  prprval  42463
  Copyright terms: Public domain W3C validator