![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euabex | Structured version Visualization version GIF version |
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2598 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | moabex 5161 | . 2 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 ∃*wmo 2549 ∃!weu 2586 {cab 2763 Vcvv 3398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pr 5140 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-sn 4399 df-pr 4401 |
This theorem is referenced by: sprval 42428 prprval 42463 |
Copyright terms: Public domain | W3C validator |