MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  euabex Structured version   Visualization version   GIF version

Theorem euabex 5421
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.)
Assertion
Ref Expression
euabex (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)

Proof of Theorem euabex
StepHypRef Expression
1 eumo 2571 . 2 (∃!𝑥𝜑 → ∃*𝑥𝜑)
2 moabex 5419 . 2 (∃*𝑥𝜑 → {𝑥𝜑} ∈ V)
31, 2syl 17 1 (∃!𝑥𝜑 → {𝑥𝜑} ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ∃*wmo 2531  ∃!weu 2561  {cab 2707  Vcvv 3447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-un 3919  df-in 3921  df-ss 3931  df-sn 4590  df-pr 4592
This theorem is referenced by:  tfsconcatun  43326  sprval  47477  prprval  47512
  Copyright terms: Public domain W3C validator