![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > euabex | Structured version Visualization version GIF version |
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2581 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | moabex 5479 | . 2 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃*wmo 2541 ∃!weu 2571 {cab 2717 Vcvv 3488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-un 3981 df-in 3983 df-ss 3993 df-sn 4649 df-pr 4651 |
This theorem is referenced by: tfsconcatun 43299 sprval 47353 prprval 47388 |
Copyright terms: Public domain | W3C validator |