Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > euabex | Structured version Visualization version GIF version |
Description: The abstraction of a wff with existential uniqueness exists. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
euabex | ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo 2578 | . 2 ⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | |
2 | moabex 5368 | . 2 ⊢ (∃*𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) | |
3 | 1, 2 | syl 17 | 1 ⊢ (∃!𝑥𝜑 → {𝑥 ∣ 𝜑} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ∃*wmo 2538 ∃!weu 2568 {cab 2715 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: sprval 44819 prprval 44854 |
Copyright terms: Public domain | W3C validator |