Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssbn Structured version   Visualization version   GIF version

Theorem cssbn 24020
 Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 29048) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 24017. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
Hypotheses
Ref Expression
cssbn.x 𝑋 = (𝑊s 𝑈)
cssbn.s 𝑆 = (LSubSp‘𝑊)
cssbn.d 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
Assertion
Ref Expression
cssbn (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)

Proof of Theorem cssbn
StepHypRef Expression
1 simpl1 1188 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec)
2 simpl2 1189 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp)
3 nvcnlm 23343 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
4 nlmngp 23324 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
6 nvclmod 23345 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
7 cssbn.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
87lsssubg 19743 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
96, 8sylan 583 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
10 cssbn.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
1110subgngp 23282 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
125, 9, 11syl2an2r 684 . . . . . 6 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
13123adant2 1128 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
1413adantr 484 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp)
15 ngpms 23247 . . . 4 (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp)
1614, 15syl 17 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp)
17 cssbn.d . . . . . . 7 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
18 eqid 2798 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
1910, 18ressds 16698 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
20193ad2ant3 1132 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2193adant2 1128 . . . . . . . . . 10 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2210subgbas 18296 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
2423sqxpeqd 5555 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋)))
2520, 24reseq12d 5823 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2617, 25syl5eq 2845 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2726eqcomd 2804 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
2827adantr 484 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
29 eqid 2798 . . . . . . . . 9 (Base‘𝑋) = (Base‘𝑋)
30 eqid 2798 . . . . . . . . 9 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
3129, 30ngpmet 23250 . . . . . . . 8 (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3213, 31syl 17 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3326, 32eqeltrd 2890 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋)))
3433adantr 484 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋)))
35 simpr 488 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))
36 eqid 2798 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3736iscmet2 23939 . . . . 5 (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))))
3834, 35, 37sylanbrc 586 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋)))
3928, 38eqeltrd 2890 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
4029, 30iscms 23990 . . 3 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
4116, 39, 40sylanbrc 586 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp)
42 simpl3 1190 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈𝑆)
4310, 7cmslssbn 24017 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
441, 2, 41, 42, 43syl22anc 837 1 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ⊆ wss 3883   × cxp 5521  dom cdm 5523   ↾ cres 5525  ‘cfv 6332  (class class class)co 7145  Basecbs 16495   ↾s cress 16496  Scalarcsca 16580  distcds 16586  SubGrpcsubg 18286  LModclmod 19648  LSubSpclss 19717  Metcmet 20098  MetOpencmopn 20102  ⇝𝑡clm 21872  MetSpcms 22966  NrmGrpcngp 23225  NrmModcnlm 23228  NrmVeccnvc 23229  Cauccau 23898  CMetccmet 23899  CMetSpccms 23977  Bancbn 23978 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cc 9864  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-omul 8108  df-er 8290  df-map 8409  df-pm 8410  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-acn 9373  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-q 12357  df-rp 12398  df-xneg 12515  df-xadd 12516  df-xmul 12517  df-ico 12752  df-fz 12906  df-fl 13177  df-seq 13385  df-exp 13446  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-clim 14857  df-rlim 14858  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-sca 16593  df-vsca 16594  df-tset 16596  df-ds 16599  df-rest 16708  df-topn 16709  df-0g 16727  df-topgen 16729  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-grp 18118  df-minusg 18119  df-sbg 18120  df-subg 18289  df-mgp 19254  df-ur 19266  df-ring 19313  df-lmod 19650  df-lss 19718  df-lvec 19889  df-psmet 20104  df-xmet 20105  df-met 20106  df-bl 20107  df-mopn 20108  df-fbas 20109  df-fg 20110  df-top 21540  df-topon 21557  df-topsp 21579  df-bases 21592  df-ntr 21666  df-nei 21744  df-lm 21875  df-fil 22492  df-fm 22584  df-flim 22585  df-flf 22586  df-xms 22968  df-ms 22969  df-nm 23230  df-ngp 23231  df-nlm 23234  df-nvc 23235  df-cfil 23900  df-cau 23901  df-cmet 23902  df-cms 23980  df-bn 23981 This theorem is referenced by:  csschl  24021
 Copyright terms: Public domain W3C validator