![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssbn | Structured version Visualization version GIF version |
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 29968) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 24664. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
Ref | Expression |
---|---|
cssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
cssbn.d | ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) |
Ref | Expression |
---|---|
cssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1192 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec) | |
2 | simpl2 1193 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp) | |
3 | nvcnlm 23988 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
4 | nlmngp 23969 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp) |
6 | nvclmod 23990 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | |
7 | cssbn.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | lsssubg 20347 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | 6, 8 | sylan 581 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
10 | cssbn.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
11 | 10 | subgngp 23919 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp) |
12 | 5, 9, 11 | syl2an2r 684 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
13 | 12 | 3adant2 1132 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
14 | 13 | adantr 482 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp) |
15 | ngpms 23884 | . . . 4 ⊢ (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp) |
17 | cssbn.d | . . . . . . 7 ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) | |
18 | eqid 2738 | . . . . . . . . . 10 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
19 | 10, 18 | ressds 17227 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → (dist‘𝑊) = (dist‘𝑋)) |
20 | 19 | 3ad2ant3 1136 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (dist‘𝑊) = (dist‘𝑋)) |
21 | 9 | 3adant2 1132 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
22 | 10 | subgbas 18867 | . . . . . . . . . 10 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
24 | 23 | sqxpeqd 5663 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋))) |
25 | 20, 24 | reseq12d 5935 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
26 | 17, 25 | eqtrid 2790 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
27 | 26 | eqcomd 2744 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
28 | 27 | adantr 482 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
29 | eqid 2738 | . . . . . . . . 9 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
30 | eqid 2738 | . . . . . . . . 9 ⊢ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) | |
31 | 29, 30 | ngpmet 23887 | . . . . . . . 8 ⊢ (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
32 | 13, 31 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
33 | 26, 32 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
34 | 33 | adantr 482 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
35 | simpr 486 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) | |
36 | eqid 2738 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
37 | 36 | iscmet2 24586 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))) |
38 | 34, 35, 37 | sylanbrc 584 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋))) |
39 | 28, 38 | eqeltrd 2839 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))) |
40 | 29, 30 | iscms 24637 | . . 3 ⊢ (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))) |
41 | 16, 39, 40 | sylanbrc 584 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp) |
42 | simpl3 1194 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈 ∈ 𝑆) | |
43 | 10, 7 | cmslssbn 24664 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
44 | 1, 2, 41, 42, 43 | syl22anc 838 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ⊆ wss 3909 × cxp 5629 dom cdm 5631 ↾ cres 5633 ‘cfv 6492 (class class class)co 7350 Basecbs 17019 ↾s cress 17048 Scalarcsca 17072 distcds 17078 SubGrpcsubg 18857 LModclmod 20251 LSubSpclss 20321 Metcmet 20711 MetOpencmopn 20715 ⇝𝑡clm 22505 MetSpcms 23599 NrmGrpcngp 23861 NrmModcnlm 23864 NrmVeccnvc 23865 Cauccau 24545 CMetccmet 24546 CMetSpccms 24624 Bancbn 24625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2709 ax-rep 5241 ax-sep 5255 ax-nul 5262 ax-pow 5319 ax-pr 5383 ax-un 7663 ax-inf2 9511 ax-cc 10305 ax-cnex 11041 ax-resscn 11042 ax-1cn 11043 ax-icn 11044 ax-addcl 11045 ax-addrcl 11046 ax-mulcl 11047 ax-mulrcl 11048 ax-mulcom 11049 ax-addass 11050 ax-mulass 11051 ax-distr 11052 ax-i2m1 11053 ax-1ne0 11054 ax-1rid 11055 ax-rnegex 11056 ax-rrecex 11057 ax-cnre 11058 ax-pre-lttri 11059 ax-pre-lttrn 11060 ax-pre-ltadd 11061 ax-pre-mulgt0 11062 ax-pre-sup 11063 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3064 df-rex 3073 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3739 df-csb 3855 df-dif 3912 df-un 3914 df-in 3916 df-ss 3926 df-pss 3928 df-nul 4282 df-if 4486 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4865 df-int 4907 df-iun 4955 df-iin 4956 df-br 5105 df-opab 5167 df-mpt 5188 df-tr 5222 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-se 5587 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6250 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6444 df-fun 6494 df-fn 6495 df-f 6496 df-f1 6497 df-fo 6498 df-f1o 6499 df-fv 6500 df-isom 6501 df-riota 7306 df-ov 7353 df-oprab 7354 df-mpo 7355 df-om 7794 df-1st 7912 df-2nd 7913 df-frecs 8180 df-wrecs 8211 df-recs 8285 df-rdg 8324 df-1o 8380 df-oadd 8384 df-omul 8385 df-er 8582 df-map 8701 df-pm 8702 df-en 8818 df-dom 8819 df-sdom 8820 df-fin 8821 df-fi 9281 df-sup 9312 df-inf 9313 df-oi 9380 df-card 9809 df-acn 9812 df-pnf 11125 df-mnf 11126 df-xr 11127 df-ltxr 11128 df-le 11129 df-sub 11321 df-neg 11322 df-div 11747 df-nn 12088 df-2 12150 df-3 12151 df-4 12152 df-5 12153 df-6 12154 df-7 12155 df-8 12156 df-9 12157 df-n0 12348 df-z 12434 df-dec 12553 df-uz 12698 df-q 12804 df-rp 12846 df-xneg 12963 df-xadd 12964 df-xmul 12965 df-ico 13200 df-fz 13355 df-fl 13627 df-seq 13837 df-exp 13898 df-cj 14919 df-re 14920 df-im 14921 df-sqrt 15055 df-abs 15056 df-clim 15306 df-rlim 15307 df-sets 16972 df-slot 16990 df-ndx 17002 df-base 17020 df-ress 17049 df-plusg 17082 df-sca 17085 df-vsca 17086 df-tset 17088 df-ds 17091 df-rest 17240 df-topn 17241 df-0g 17259 df-topgen 17261 df-mgm 18433 df-sgrp 18482 df-mnd 18493 df-grp 18687 df-minusg 18688 df-sbg 18689 df-subg 18860 df-mgp 19832 df-ur 19849 df-ring 19896 df-lmod 20253 df-lss 20322 df-lvec 20493 df-psmet 20717 df-xmet 20718 df-met 20719 df-bl 20720 df-mopn 20721 df-fbas 20722 df-fg 20723 df-top 22171 df-topon 22188 df-topsp 22210 df-bases 22224 df-ntr 22299 df-nei 22377 df-lm 22508 df-fil 23125 df-fm 23217 df-flim 23218 df-flf 23219 df-xms 23601 df-ms 23602 df-nm 23866 df-ngp 23867 df-nlm 23870 df-nvc 23871 df-cfil 24547 df-cau 24548 df-cmet 24549 df-cms 24627 df-bn 24628 |
This theorem is referenced by: csschl 24668 |
Copyright terms: Public domain | W3C validator |