![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssbn | Structured version Visualization version GIF version |
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 28689) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 23658. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
Ref | Expression |
---|---|
cssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
cssbn.d | ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) |
Ref | Expression |
---|---|
cssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1184 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec) | |
2 | simpl2 1185 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp) | |
3 | nvcnlm 22988 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
4 | nlmngp 22969 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp) |
6 | nvclmod 22990 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | |
7 | cssbn.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | lsssubg 19419 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
10 | cssbn.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
11 | 10 | subgngp 22927 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp) |
12 | 5, 9, 11 | syl2an2r 681 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
13 | 12 | 3adant2 1124 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp) |
15 | ngpms 22892 | . . . 4 ⊢ (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp) |
17 | cssbn.d | . . . . . . 7 ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) | |
18 | eqid 2795 | . . . . . . . . . 10 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
19 | 10, 18 | ressds 16515 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → (dist‘𝑊) = (dist‘𝑋)) |
20 | 19 | 3ad2ant3 1128 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (dist‘𝑊) = (dist‘𝑋)) |
21 | 9 | 3adant2 1124 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
22 | 10 | subgbas 18037 | . . . . . . . . . 10 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
24 | 23 | sqxpeqd 5475 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋))) |
25 | 20, 24 | reseq12d 5735 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
26 | 17, 25 | syl5eq 2843 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
27 | 26 | eqcomd 2801 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
28 | 27 | adantr 481 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
29 | eqid 2795 | . . . . . . . . 9 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
30 | eqid 2795 | . . . . . . . . 9 ⊢ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) | |
31 | 29, 30 | ngpmet 22895 | . . . . . . . 8 ⊢ (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
32 | 13, 31 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
33 | 26, 32 | eqeltrd 2883 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
34 | 33 | adantr 481 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
35 | simpr 485 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) | |
36 | eqid 2795 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
37 | 36 | iscmet2 23580 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))) |
38 | 34, 35, 37 | sylanbrc 583 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋))) |
39 | 28, 38 | eqeltrd 2883 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))) |
40 | 29, 30 | iscms 23631 | . . 3 ⊢ (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))) |
41 | 16, 39, 40 | sylanbrc 583 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp) |
42 | simpl3 1186 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈 ∈ 𝑆) | |
43 | 10, 7 | cmslssbn 23658 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
44 | 1, 2, 41, 42, 43 | syl22anc 835 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 × cxp 5441 dom cdm 5443 ↾ cres 5445 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 ↾s cress 16313 Scalarcsca 16397 distcds 16403 SubGrpcsubg 18027 LModclmod 19324 LSubSpclss 19393 Metcmet 20213 MetOpencmopn 20217 ⇝𝑡clm 21518 MetSpcms 22611 NrmGrpcngp 22870 NrmModcnlm 22873 NrmVeccnvc 22874 Cauccau 23539 CMetccmet 23540 CMetSpccms 23618 Bancbn 23619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cc 9703 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-omul 7958 df-er 8139 df-map 8258 df-pm 8259 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-fi 8721 df-sup 8752 df-inf 8753 df-oi 8820 df-card 9214 df-acn 9217 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-q 12198 df-rp 12240 df-xneg 12357 df-xadd 12358 df-xmul 12359 df-ico 12594 df-fz 12743 df-fl 13012 df-seq 13220 df-exp 13280 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-sca 16410 df-vsca 16411 df-tset 16413 df-ds 16416 df-rest 16525 df-topn 16526 df-0g 16544 df-topgen 16546 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-grp 17864 df-minusg 17865 df-sbg 17866 df-subg 18030 df-mgp 18930 df-ur 18942 df-ring 18989 df-lmod 19326 df-lss 19394 df-lvec 19565 df-psmet 20219 df-xmet 20220 df-met 20221 df-bl 20222 df-mopn 20223 df-fbas 20224 df-fg 20225 df-top 21186 df-topon 21203 df-topsp 21225 df-bases 21238 df-ntr 21312 df-nei 21390 df-lm 21521 df-fil 22138 df-fm 22230 df-flim 22231 df-flf 22232 df-xms 22613 df-ms 22614 df-nm 22875 df-ngp 22876 df-nlm 22879 df-nvc 22880 df-cfil 23541 df-cau 23542 df-cmet 23543 df-cms 23621 df-bn 23622 |
This theorem is referenced by: csschl 23662 |
Copyright terms: Public domain | W3C validator |