![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cssbn | Structured version Visualization version GIF version |
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 31263) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25428. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
Ref | Expression |
---|---|
cssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
cssbn.d | ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) |
Ref | Expression |
---|---|
cssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec) | |
2 | simpl2 1192 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp) | |
3 | nvcnlm 24739 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
4 | nlmngp 24720 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp) |
6 | nvclmod 24741 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | |
7 | cssbn.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
8 | 7 | lsssubg 20979 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
10 | cssbn.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
11 | 10 | subgngp 24670 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp) |
12 | 5, 9, 11 | syl2an2r 685 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
13 | 12 | 3adant2 1131 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
14 | 13 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp) |
15 | ngpms 24635 | . . . 4 ⊢ (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp) |
17 | cssbn.d | . . . . . . 7 ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) | |
18 | eqid 2736 | . . . . . . . . . 10 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
19 | 10, 18 | ressds 17462 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → (dist‘𝑊) = (dist‘𝑋)) |
20 | 19 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (dist‘𝑊) = (dist‘𝑋)) |
21 | 9 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
22 | 10 | subgbas 19167 | . . . . . . . . . 10 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
24 | 23 | sqxpeqd 5722 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋))) |
25 | 20, 24 | reseq12d 6002 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
26 | 17, 25 | eqtrid 2788 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
27 | 26 | eqcomd 2742 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
28 | 27 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
29 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
30 | eqid 2736 | . . . . . . . . 9 ⊢ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) | |
31 | 29, 30 | ngpmet 24638 | . . . . . . . 8 ⊢ (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
32 | 13, 31 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
33 | 26, 32 | eqeltrd 2840 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
34 | 33 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
35 | simpr 484 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) | |
36 | eqid 2736 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
37 | 36 | iscmet2 25350 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))) |
38 | 34, 35, 37 | sylanbrc 583 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋))) |
39 | 28, 38 | eqeltrd 2840 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))) |
40 | 29, 30 | iscms 25401 | . . 3 ⊢ (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))) |
41 | 16, 39, 40 | sylanbrc 583 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp) |
42 | simpl3 1193 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈 ∈ 𝑆) | |
43 | 10, 7 | cmslssbn 25428 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
44 | 1, 2, 41, 42, 43 | syl22anc 839 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1538 ∈ wcel 2107 ⊆ wss 3964 × cxp 5688 dom cdm 5690 ↾ cres 5692 ‘cfv 6566 (class class class)co 7435 Basecbs 17251 ↾s cress 17280 Scalarcsca 17307 distcds 17313 SubGrpcsubg 19157 LModclmod 20881 LSubSpclss 20953 Metcmet 21374 MetOpencmopn 21378 ⇝𝑡clm 23256 MetSpcms 24350 NrmGrpcngp 24612 NrmModcnlm 24615 NrmVeccnvc 24616 Cauccau 25309 CMetccmet 25310 CMetSpccms 25388 Bancbn 25389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cc 10479 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-oadd 8515 df-omul 8516 df-er 8750 df-map 8873 df-pm 8874 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-acn 9986 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ico 13396 df-fz 13551 df-fl 13835 df-seq 14046 df-exp 14106 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-clim 15527 df-rlim 15528 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-sca 17320 df-vsca 17321 df-tset 17323 df-ds 17326 df-rest 17475 df-topn 17476 df-0g 17494 df-topgen 17496 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-mgp 20159 df-ur 20206 df-ring 20259 df-lmod 20883 df-lss 20954 df-lvec 21126 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-ntr 23050 df-nei 23128 df-lm 23259 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-nm 24617 df-ngp 24618 df-nlm 24621 df-nvc 24622 df-cfil 25311 df-cau 25312 df-cmet 25313 df-cms 25391 df-bn 25392 |
This theorem is referenced by: csschl 25432 |
Copyright terms: Public domain | W3C validator |