MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssbn Structured version   Visualization version   GIF version

Theorem cssbn 24667
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition C (df-ch 29968) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 24664. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
Hypotheses
Ref Expression
cssbn.x 𝑋 = (𝑊s 𝑈)
cssbn.s 𝑆 = (LSubSp‘𝑊)
cssbn.d 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
Assertion
Ref Expression
cssbn (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)

Proof of Theorem cssbn
StepHypRef Expression
1 simpl1 1192 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec)
2 simpl2 1193 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp)
3 nvcnlm 23988 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
4 nlmngp 23969 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
6 nvclmod 23990 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
7 cssbn.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
87lsssubg 20347 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
96, 8sylan 581 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
10 cssbn.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
1110subgngp 23919 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
125, 9, 11syl2an2r 684 . . . . . 6 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
13123adant2 1132 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
1413adantr 482 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp)
15 ngpms 23884 . . . 4 (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp)
1614, 15syl 17 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp)
17 cssbn.d . . . . . . 7 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
18 eqid 2738 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
1910, 18ressds 17227 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
20193ad2ant3 1136 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2193adant2 1132 . . . . . . . . . 10 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2210subgbas 18867 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
2423sqxpeqd 5663 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋)))
2520, 24reseq12d 5935 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2617, 25eqtrid 2790 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2726eqcomd 2744 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
2827adantr 482 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
29 eqid 2738 . . . . . . . . 9 (Base‘𝑋) = (Base‘𝑋)
30 eqid 2738 . . . . . . . . 9 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
3129, 30ngpmet 23887 . . . . . . . 8 (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3213, 31syl 17 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3326, 32eqeltrd 2839 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋)))
3433adantr 482 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋)))
35 simpr 486 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))
36 eqid 2738 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3736iscmet2 24586 . . . . 5 (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))))
3834, 35, 37sylanbrc 584 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋)))
3928, 38eqeltrd 2839 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
4029, 30iscms 24637 . . 3 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
4116, 39, 40sylanbrc 584 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp)
42 simpl3 1194 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈𝑆)
4310, 7cmslssbn 24664 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
441, 2, 41, 42, 43syl22anc 838 1 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wss 3909   × cxp 5629  dom cdm 5631  cres 5633  cfv 6492  (class class class)co 7350  Basecbs 17019  s cress 17048  Scalarcsca 17072  distcds 17078  SubGrpcsubg 18857  LModclmod 20251  LSubSpclss 20321  Metcmet 20711  MetOpencmopn 20715  𝑡clm 22505  MetSpcms 23599  NrmGrpcngp 23861  NrmModcnlm 23864  NrmVeccnvc 23865  Cauccau 24545  CMetccmet 24546  CMetSpccms 24624  Bancbn 24625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cc 10305  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8582  df-map 8701  df-pm 8702  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-card 9809  df-acn 9812  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12553  df-uz 12698  df-q 12804  df-rp 12846  df-xneg 12963  df-xadd 12964  df-xmul 12965  df-ico 13200  df-fz 13355  df-fl 13627  df-seq 13837  df-exp 13898  df-cj 14919  df-re 14920  df-im 14921  df-sqrt 15055  df-abs 15056  df-clim 15306  df-rlim 15307  df-sets 16972  df-slot 16990  df-ndx 17002  df-base 17020  df-ress 17049  df-plusg 17082  df-sca 17085  df-vsca 17086  df-tset 17088  df-ds 17091  df-rest 17240  df-topn 17241  df-0g 17259  df-topgen 17261  df-mgm 18433  df-sgrp 18482  df-mnd 18493  df-grp 18687  df-minusg 18688  df-sbg 18689  df-subg 18860  df-mgp 19832  df-ur 19849  df-ring 19896  df-lmod 20253  df-lss 20322  df-lvec 20493  df-psmet 20717  df-xmet 20718  df-met 20719  df-bl 20720  df-mopn 20721  df-fbas 20722  df-fg 20723  df-top 22171  df-topon 22188  df-topsp 22210  df-bases 22224  df-ntr 22299  df-nei 22377  df-lm 22508  df-fil 23125  df-fm 23217  df-flim 23218  df-flf 23219  df-xms 23601  df-ms 23602  df-nm 23866  df-ngp 23867  df-nlm 23870  df-nvc 23871  df-cfil 24547  df-cau 24548  df-cmet 24549  df-cms 24627  df-bn 24628
This theorem is referenced by:  csschl  24668
  Copyright terms: Public domain W3C validator