MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssbn Structured version   Visualization version   GIF version

Theorem cssbn 24539
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition C (df-ch 29583) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 24536. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
Hypotheses
Ref Expression
cssbn.x 𝑋 = (𝑊s 𝑈)
cssbn.s 𝑆 = (LSubSp‘𝑊)
cssbn.d 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
Assertion
Ref Expression
cssbn (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)

Proof of Theorem cssbn
StepHypRef Expression
1 simpl1 1190 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec)
2 simpl2 1191 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp)
3 nvcnlm 23860 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
4 nlmngp 23841 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
6 nvclmod 23862 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
7 cssbn.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
87lsssubg 20219 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
96, 8sylan 580 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
10 cssbn.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
1110subgngp 23791 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
125, 9, 11syl2an2r 682 . . . . . 6 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
13123adant2 1130 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
1413adantr 481 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp)
15 ngpms 23756 . . . 4 (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp)
1614, 15syl 17 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp)
17 cssbn.d . . . . . . 7 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
18 eqid 2738 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
1910, 18ressds 17120 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
20193ad2ant3 1134 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2193adant2 1130 . . . . . . . . . 10 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2210subgbas 18759 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
2423sqxpeqd 5621 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋)))
2520, 24reseq12d 5892 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2617, 25eqtrid 2790 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2726eqcomd 2744 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
2827adantr 481 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
29 eqid 2738 . . . . . . . . 9 (Base‘𝑋) = (Base‘𝑋)
30 eqid 2738 . . . . . . . . 9 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
3129, 30ngpmet 23759 . . . . . . . 8 (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3213, 31syl 17 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3326, 32eqeltrd 2839 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋)))
3433adantr 481 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋)))
35 simpr 485 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))
36 eqid 2738 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3736iscmet2 24458 . . . . 5 (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))))
3834, 35, 37sylanbrc 583 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋)))
3928, 38eqeltrd 2839 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
4029, 30iscms 24509 . . 3 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
4116, 39, 40sylanbrc 583 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp)
42 simpl3 1192 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈𝑆)
4310, 7cmslssbn 24536 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
441, 2, 41, 42, 43syl22anc 836 1 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wss 3887   × cxp 5587  dom cdm 5589  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Scalarcsca 16965  distcds 16971  SubGrpcsubg 18749  LModclmod 20123  LSubSpclss 20193  Metcmet 20583  MetOpencmopn 20587  𝑡clm 22377  MetSpcms 23471  NrmGrpcngp 23733  NrmModcnlm 23736  NrmVeccnvc 23737  Cauccau 24417  CMetccmet 24418  CMetSpccms 24496  Bancbn 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ico 13085  df-fz 13240  df-fl 13512  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-tset 16981  df-ds 16984  df-rest 17133  df-topn 17134  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lvec 20365  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-ntr 22171  df-nei 22249  df-lm 22380  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nlm 23742  df-nvc 23743  df-cfil 24419  df-cau 24420  df-cmet 24421  df-cms 24499  df-bn 24500
This theorem is referenced by:  csschl  24540
  Copyright terms: Public domain W3C validator