| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cssbn | Structured version Visualization version GIF version | ||
| Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition Cℋ (df-ch 31157) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25279. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.) |
| Ref | Expression |
|---|---|
| cssbn.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| cssbn.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| cssbn.d | ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) |
| Ref | Expression |
|---|---|
| cssbn | ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec) | |
| 2 | simpl2 1193 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp) | |
| 3 | nvcnlm 24590 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
| 4 | nlmngp 24571 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
| 5 | 3, 4 | syl 17 | . . . . . . 7 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp) |
| 6 | nvclmod 24592 | . . . . . . . 8 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ LMod) | |
| 7 | cssbn.s | . . . . . . . . 9 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 8 | 7 | lsssubg 20869 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 9 | 6, 8 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 10 | cssbn.x | . . . . . . . 8 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 11 | 10 | subgngp 24529 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp) |
| 12 | 5, 9, 11 | syl2an2r 685 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
| 13 | 12 | 3adant2 1131 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ NrmGrp) |
| 14 | 13 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp) |
| 15 | ngpms 24494 | . . . 4 ⊢ (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp) |
| 17 | cssbn.d | . . . . . . 7 ⊢ 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈)) | |
| 18 | eqid 2730 | . . . . . . . . . 10 ⊢ (dist‘𝑊) = (dist‘𝑊) | |
| 19 | 10, 18 | ressds 17379 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝑆 → (dist‘𝑊) = (dist‘𝑋)) |
| 20 | 19 | 3ad2ant3 1135 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (dist‘𝑊) = (dist‘𝑋)) |
| 21 | 9 | 3adant2 1131 | . . . . . . . . . 10 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 22 | 10 | subgbas 19068 | . . . . . . . . . 10 ⊢ (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋)) |
| 23 | 21, 22 | syl 17 | . . . . . . . . 9 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑈 = (Base‘𝑋)) |
| 24 | 23 | sqxpeqd 5678 | . . . . . . . 8 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋))) |
| 25 | 20, 24 | reseq12d 5959 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
| 26 | 17, 25 | eqtrid 2777 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))) |
| 27 | 26 | eqcomd 2736 | . . . . 5 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷) |
| 29 | eqid 2730 | . . . . . . . . 9 ⊢ (Base‘𝑋) = (Base‘𝑋) | |
| 30 | eqid 2730 | . . . . . . . . 9 ⊢ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) | |
| 31 | 29, 30 | ngpmet 24497 | . . . . . . . 8 ⊢ (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
| 32 | 13, 31 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋))) |
| 33 | 26, 32 | eqeltrd 2829 | . . . . . 6 ⊢ ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
| 34 | 33 | adantr 480 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋))) |
| 35 | simpr 484 | . . . . 5 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) | |
| 36 | eqid 2730 | . . . . . 6 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
| 37 | 36 | iscmet2 25201 | . . . . 5 ⊢ (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))) |
| 38 | 34, 35, 37 | sylanbrc 583 | . . . 4 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋))) |
| 39 | 28, 38 | eqeltrd 2829 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))) |
| 40 | 29, 30 | iscms 25252 | . . 3 ⊢ (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))) |
| 41 | 16, 39, 40 | sylanbrc 583 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp) |
| 42 | simpl3 1194 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈 ∈ 𝑆) | |
| 43 | 10, 7 | cmslssbn 25279 | . 2 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
| 44 | 1, 2, 41, 42, 43 | syl22anc 838 | 1 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈 ∈ 𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 × cxp 5644 dom cdm 5646 ↾ cres 5648 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 Scalarcsca 17229 distcds 17235 SubGrpcsubg 19058 LModclmod 20772 LSubSpclss 20843 Metcmet 21256 MetOpencmopn 21260 ⇝𝑡clm 23119 MetSpcms 24212 NrmGrpcngp 24471 NrmModcnlm 24474 NrmVeccnvc 24475 Cauccau 25160 CMetccmet 25161 CMetSpccms 25239 Bancbn 25240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cc 10406 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-omul 8448 df-er 8682 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-acn 9913 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ico 13325 df-fz 13482 df-fl 13766 df-seq 13977 df-exp 14037 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-rlim 15462 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-sca 17242 df-vsca 17243 df-tset 17245 df-ds 17248 df-rest 17391 df-topn 17392 df-0g 17410 df-topgen 17412 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-mgp 20056 df-ur 20097 df-ring 20150 df-lmod 20774 df-lss 20844 df-lvec 21016 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-ntr 22913 df-nei 22991 df-lm 23122 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-nm 24476 df-ngp 24477 df-nlm 24480 df-nvc 24481 df-cfil 25162 df-cau 25163 df-cmet 25164 df-cms 25242 df-bn 25243 |
| This theorem is referenced by: csschl 25283 |
| Copyright terms: Public domain | W3C validator |