MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cssbn Structured version   Visualization version   GIF version

Theorem cssbn 25282
Description: A complete subspace of a normed vector space with a complete scalar field is a Banach space. Remark: In contrast to ClSubSp, a complete subspace is defined by "a linear subspace in which all Cauchy sequences converge to a point in the subspace". This is closer to the original, but deprecated definition C (df-ch 31157) of closed subspaces of a Hilbert space. It may be superseded by cmslssbn 25279. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 6-Oct-2022.)
Hypotheses
Ref Expression
cssbn.x 𝑋 = (𝑊s 𝑈)
cssbn.s 𝑆 = (LSubSp‘𝑊)
cssbn.d 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
Assertion
Ref Expression
cssbn (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)

Proof of Theorem cssbn
StepHypRef Expression
1 simpl1 1192 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑊 ∈ NrmVec)
2 simpl2 1193 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Scalar‘𝑊) ∈ CMetSp)
3 nvcnlm 24590 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
4 nlmngp 24571 . . . . . . . 8 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
53, 4syl 17 . . . . . . 7 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
6 nvclmod 24592 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
7 cssbn.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
87lsssubg 20869 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
96, 8sylan 580 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
10 cssbn.x . . . . . . . 8 𝑋 = (𝑊s 𝑈)
1110subgngp 24529 . . . . . . 7 ((𝑊 ∈ NrmGrp ∧ 𝑈 ∈ (SubGrp‘𝑊)) → 𝑋 ∈ NrmGrp)
125, 9, 11syl2an2r 685 . . . . . 6 ((𝑊 ∈ NrmVec ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
13123adant2 1131 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ NrmGrp)
1413adantr 480 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ NrmGrp)
15 ngpms 24494 . . . 4 (𝑋 ∈ NrmGrp → 𝑋 ∈ MetSp)
1614, 15syl 17 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ MetSp)
17 cssbn.d . . . . . . 7 𝐷 = ((dist‘𝑊) ↾ (𝑈 × 𝑈))
18 eqid 2730 . . . . . . . . . 10 (dist‘𝑊) = (dist‘𝑊)
1910, 18ressds 17379 . . . . . . . . 9 (𝑈𝑆 → (dist‘𝑊) = (dist‘𝑋))
20193ad2ant3 1135 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (dist‘𝑊) = (dist‘𝑋))
2193adant2 1131 . . . . . . . . . 10 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
2210subgbas 19068 . . . . . . . . . 10 (𝑈 ∈ (SubGrp‘𝑊) → 𝑈 = (Base‘𝑋))
2321, 22syl 17 . . . . . . . . 9 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
2423sqxpeqd 5678 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → (𝑈 × 𝑈) = ((Base‘𝑋) × (Base‘𝑋)))
2520, 24reseq12d 5959 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑊) ↾ (𝑈 × 𝑈)) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2617, 25eqtrid 2777 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))))
2726eqcomd 2736 . . . . 5 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
2827adantr 480 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = 𝐷)
29 eqid 2730 . . . . . . . . 9 (Base‘𝑋) = (Base‘𝑋)
30 eqid 2730 . . . . . . . . 9 ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) = ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋)))
3129, 30ngpmet 24497 . . . . . . . 8 (𝑋 ∈ NrmGrp → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3213, 31syl 17 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (Met‘(Base‘𝑋)))
3326, 32eqeltrd 2829 . . . . . 6 ((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) → 𝐷 ∈ (Met‘(Base‘𝑋)))
3433adantr 480 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (Met‘(Base‘𝑋)))
35 simpr 484 . . . . 5 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷)))
36 eqid 2730 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
3736iscmet2 25201 . . . . 5 (𝐷 ∈ (CMet‘(Base‘𝑋)) ↔ (𝐷 ∈ (Met‘(Base‘𝑋)) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))))
3834, 35, 37sylanbrc 583 . . . 4 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝐷 ∈ (CMet‘(Base‘𝑋)))
3928, 38eqeltrd 2829 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋)))
4029, 30iscms 25252 . . 3 (𝑋 ∈ CMetSp ↔ (𝑋 ∈ MetSp ∧ ((dist‘𝑋) ↾ ((Base‘𝑋) × (Base‘𝑋))) ∈ (CMet‘(Base‘𝑋))))
4116, 39, 40sylanbrc 583 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ CMetSp)
42 simpl3 1194 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑈𝑆)
4310, 7cmslssbn 25279 . 2 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
441, 2, 41, 42, 43syl22anc 838 1 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp ∧ 𝑈𝑆) ∧ (Cau‘𝐷) ⊆ dom (⇝𝑡‘(MetOpen‘𝐷))) → 𝑋 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3922   × cxp 5644  dom cdm 5646  cres 5648  cfv 6519  (class class class)co 7394  Basecbs 17185  s cress 17206  Scalarcsca 17229  distcds 17235  SubGrpcsubg 19058  LModclmod 20772  LSubSpclss 20843  Metcmet 21256  MetOpencmopn 21260  𝑡clm 23119  MetSpcms 24212  NrmGrpcngp 24471  NrmModcnlm 24474  NrmVeccnvc 24475  Cauccau 25160  CMetccmet 25161  CMetSpccms 25239  Bancbn 25240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cc 10406  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-iin 4966  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-omul 8448  df-er 8682  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fi 9380  df-sup 9411  df-inf 9412  df-oi 9481  df-card 9910  df-acn 9913  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-7 12265  df-8 12266  df-9 12267  df-n0 12459  df-z 12546  df-dec 12666  df-uz 12810  df-q 12922  df-rp 12966  df-xneg 13085  df-xadd 13086  df-xmul 13087  df-ico 13325  df-fz 13482  df-fl 13766  df-seq 13977  df-exp 14037  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-clim 15461  df-rlim 15462  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-sca 17242  df-vsca 17243  df-tset 17245  df-ds 17248  df-rest 17391  df-topn 17392  df-0g 17410  df-topgen 17412  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-mgp 20056  df-ur 20097  df-ring 20150  df-lmod 20774  df-lss 20844  df-lvec 21016  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-ntr 22913  df-nei 22991  df-lm 23122  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-nm 24476  df-ngp 24477  df-nlm 24480  df-nvc 24481  df-cfil 25162  df-cau 25163  df-cmet 25164  df-cms 25242  df-bn 25243
This theorem is referenced by:  csschl  25283
  Copyright terms: Public domain W3C validator