MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnlm Structured version   Visualization version   GIF version

Theorem bnnlm 24505
Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnnlm (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)

Proof of Theorem bnnlm
StepHypRef Expression
1 bnnvc 24504 . 2 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 nvcnlm 23860 . 2 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
31, 2syl 17 1 (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  NrmModcnlm 23736  NrmVeccnvc 23737  Bancbn 24497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-nvc 23743  df-bn 24500
This theorem is referenced by:  bnngp  24506  bnlmod  24507
  Copyright terms: Public domain W3C validator