![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bnnlm | Structured version Visualization version GIF version |
Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
bnnlm | ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnnvc 25351 | . 2 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
2 | nvcnlm 24696 | . 2 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 NrmModcnlm 24572 NrmVeccnvc 24573 Bancbn 25344 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-iota 6505 df-fv 6561 df-nvc 24579 df-bn 25347 |
This theorem is referenced by: bnngp 25353 bnlmod 25354 |
Copyright terms: Public domain | W3C validator |