MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnlm Structured version   Visualization version   GIF version

Theorem bnnlm 24410
Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnnlm (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)

Proof of Theorem bnnlm
StepHypRef Expression
1 bnnvc 24409 . 2 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 nvcnlm 23766 . 2 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
31, 2syl 17 1 (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  NrmModcnlm 23642  NrmVeccnvc 23643  Bancbn 24402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-nvc 23649  df-bn 24405
This theorem is referenced by:  bnngp  24411  bnlmod  24412
  Copyright terms: Public domain W3C validator