MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnlm Structured version   Visualization version   GIF version

Theorem bnnlm 24603
Description: A Banach space is a normed module. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
bnnlm (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)

Proof of Theorem bnnlm
StepHypRef Expression
1 bnnvc 24602 . 2 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
2 nvcnlm 23958 . 2 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
31, 2syl 17 1 (𝑊 ∈ Ban → 𝑊 ∈ NrmMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2105  NrmModcnlm 23834  NrmVeccnvc 23835  Bancbn 24595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3404  df-v 3443  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-br 5090  df-iota 6425  df-fv 6481  df-nvc 23841  df-bn 24598
This theorem is referenced by:  bnngp  24604  bnlmod  24605
  Copyright terms: Public domain W3C validator