MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsdif Structured version   Visualization version   GIF version

Theorem ncvsdif 24319
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
Assertion
Ref Expression
ncvsdif ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))

Proof of Theorem ncvsdif
StepHypRef Expression
1 elin 3903 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
32cvsclm 24289 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
41, 3simplbiim 505 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
5 ncvsprp.v . . . . . 6 𝑉 = (Base‘𝑊)
6 ncvsdif.p . . . . . 6 + = (+g𝑊)
7 eqid 2738 . . . . . 6 (-g𝑊) = (-g𝑊)
8 eqid 2738 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 ncvsprp.s . . . . . 6 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9clmvsubval 24272 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
1110eqcomd 2744 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
124, 11syl3an1 1162 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
1312fveq2d 6778 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
14 nvcnlm 23860 . . . . . 6 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
15 nlmngp 23841 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
1614, 15syl 17 . . . . 5 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
1716adantr 481 . . . 4 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
181, 17sylbi 216 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
19 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
205, 19, 7nmsub 23779 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2118, 20syl3an1 1162 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2243ad2ant1 1132 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ ℂMod)
23 simp3 1137 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
24 simp2 1136 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
255, 6, 7, 8, 9clmvsubval 24272 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2622, 23, 24, 25syl3anc 1370 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2726fveq2d 6778 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐵(-g𝑊)𝐴)) = (𝑁‘(𝐵 + (-1 · 𝐴))))
2813, 21, 273eqtrd 2782 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cin 3886  cfv 6433  (class class class)co 7275  1c1 10872  -cneg 11206  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  -gcsg 18579  normcnm 23732  NrmGrpcngp 23733  NrmModcnlm 23736  NrmVeccnvc 23737  ℂModcclm 24225  ℂVecccvs 24286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cmn 19388  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-lmod 20125  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739  df-nlm 23742  df-nvc 23743  df-clm 24226  df-cvs 24287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator