Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncvsdif | Structured version Visualization version GIF version |
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | ⊢ 𝑉 = (Base‘𝑊) |
ncvsprp.n | ⊢ 𝑁 = (norm‘𝑊) |
ncvsprp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ncvsdif.p | ⊢ + = (+g‘𝑊) |
Ref | Expression |
---|---|
ncvsdif | ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3899 | . . . . 5 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec)) | |
2 | id 22 | . . . . . 6 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec) | |
3 | 2 | cvsclm 24195 | . . . . 5 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
4 | 1, 3 | simplbiim 504 | . . . 4 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod) |
5 | ncvsprp.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
6 | ncvsdif.p | . . . . . 6 ⊢ + = (+g‘𝑊) | |
7 | eqid 2738 | . . . . . 6 ⊢ (-g‘𝑊) = (-g‘𝑊) | |
8 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
9 | ncvsprp.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
10 | 5, 6, 7, 8, 9 | clmvsubval 24178 | . . . . 5 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴(-g‘𝑊)𝐵) = (𝐴 + (-1 · 𝐵))) |
11 | 10 | eqcomd 2744 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g‘𝑊)𝐵)) |
12 | 4, 11 | syl3an1 1161 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g‘𝑊)𝐵)) |
13 | 12 | fveq2d 6760 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g‘𝑊)𝐵))) |
14 | nvcnlm 23766 | . . . . . 6 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
15 | nlmngp 23747 | . . . . . 6 ⊢ (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp) |
18 | 1, 17 | sylbi 216 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp) |
19 | ncvsprp.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
20 | 5, 19, 7 | nmsub 23685 | . . 3 ⊢ ((𝑊 ∈ NrmGrp ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴(-g‘𝑊)𝐵)) = (𝑁‘(𝐵(-g‘𝑊)𝐴))) |
21 | 18, 20 | syl3an1 1161 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴(-g‘𝑊)𝐵)) = (𝑁‘(𝐵(-g‘𝑊)𝐴))) |
22 | 4 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝑊 ∈ ℂMod) |
23 | simp3 1136 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
24 | simp2 1135 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
25 | 5, 6, 7, 8, 9 | clmvsubval 24178 | . . . 4 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → (𝐵(-g‘𝑊)𝐴) = (𝐵 + (-1 · 𝐴))) |
26 | 22, 23, 24, 25 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐵(-g‘𝑊)𝐴) = (𝐵 + (-1 · 𝐴))) |
27 | 26 | fveq2d 6760 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐵(-g‘𝑊)𝐴)) = (𝑁‘(𝐵 + (-1 · 𝐴)))) |
28 | 13, 21, 27 | 3eqtrd 2782 | 1 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 ‘cfv 6418 (class class class)co 7255 1c1 10803 -cneg 11136 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 -gcsg 18494 normcnm 23638 NrmGrpcngp 23639 NrmModcnlm 23642 NrmVeccnvc 23643 ℂModcclm 24131 ℂVecccvs 24192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-0g 17069 df-topgen 17071 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-lmod 20040 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 df-nlm 23648 df-nvc 23649 df-clm 24132 df-cvs 24193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |