MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsdif Structured version   Visualization version   GIF version

Theorem ncvsdif 25127
Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
Assertion
Ref Expression
ncvsdif ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))

Proof of Theorem ncvsdif
StepHypRef Expression
1 elin 3960 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
32cvsclm 25097 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
41, 3simplbiim 503 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
5 ncvsprp.v . . . . . 6 𝑉 = (Base‘𝑊)
6 ncvsdif.p . . . . . 6 + = (+g𝑊)
7 eqid 2725 . . . . . 6 (-g𝑊) = (-g𝑊)
8 eqid 2725 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 ncvsprp.s . . . . . 6 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9clmvsubval 25080 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
1110eqcomd 2731 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
124, 11syl3an1 1160 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
1312fveq2d 6900 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
14 nvcnlm 24657 . . . . . 6 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
15 nlmngp 24638 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
1614, 15syl 17 . . . . 5 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
1716adantr 479 . . . 4 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
181, 17sylbi 216 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
19 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
205, 19, 7nmsub 24576 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2118, 20syl3an1 1160 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2243ad2ant1 1130 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ ℂMod)
23 simp3 1135 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
24 simp2 1134 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
255, 6, 7, 8, 9clmvsubval 25080 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2622, 23, 24, 25syl3anc 1368 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2726fveq2d 6900 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐵(-g𝑊)𝐴)) = (𝑁‘(𝐵 + (-1 · 𝐴))))
2813, 21, 273eqtrd 2769 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3943  cfv 6549  (class class class)co 7419  1c1 11141  -cneg 11477  Basecbs 17183  +gcplusg 17236  Scalarcsca 17239   ·𝑠 cvsca 17240  -gcsg 18900  normcnm 24529  NrmGrpcngp 24530  NrmModcnlm 24533  NrmVeccnvc 24534  ℂModcclm 25033  ℂVecccvs 25094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9467  df-inf 9468  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-q 12966  df-rp 13010  df-xneg 13127  df-xadd 13128  df-xmul 13129  df-fz 13520  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-0g 17426  df-topgen 17428  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cmn 19749  df-mgp 20087  df-ur 20134  df-ring 20187  df-cring 20188  df-subrg 20520  df-lmod 20757  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22840  df-topon 22857  df-topsp 22879  df-bases 22893  df-xms 24270  df-ms 24271  df-nm 24535  df-ngp 24536  df-nlm 24539  df-nvc 24540  df-clm 25034  df-cvs 25095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator