Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsdif Structured version   Visualization version   GIF version

Theorem ncvsdif 23331
 Description: The norm of the difference between two vectors. (Contributed by NM, 1-Dec-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
Assertion
Ref Expression
ncvsdif ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))

Proof of Theorem ncvsdif
StepHypRef Expression
1 elin 4025 . . . . 5 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 id 22 . . . . . 6 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
32cvsclm 23302 . . . . 5 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
41, 3simplbiim 500 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
5 ncvsprp.v . . . . . 6 𝑉 = (Base‘𝑊)
6 ncvsdif.p . . . . . 6 + = (+g𝑊)
7 eqid 2825 . . . . . 6 (-g𝑊) = (-g𝑊)
8 eqid 2825 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
9 ncvsprp.s . . . . . 6 · = ( ·𝑠𝑊)
105, 6, 7, 8, 9clmvsubval 23285 . . . . 5 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴(-g𝑊)𝐵) = (𝐴 + (-1 · 𝐵)))
1110eqcomd 2831 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
124, 11syl3an1 1206 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐴 + (-1 · 𝐵)) = (𝐴(-g𝑊)𝐵))
1312fveq2d 6441 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐴(-g𝑊)𝐵)))
14 nvcnlm 22877 . . . . . 6 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
15 nlmngp 22858 . . . . . 6 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
1614, 15syl 17 . . . . 5 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
1716adantr 474 . . . 4 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
181, 17sylbi 209 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
19 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
205, 19, 7nmsub 22804 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2118, 20syl3an1 1206 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴(-g𝑊)𝐵)) = (𝑁‘(𝐵(-g𝑊)𝐴)))
2243ad2ant1 1167 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝑊 ∈ ℂMod)
23 simp3 1172 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐵𝑉)
24 simp2 1171 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → 𝐴𝑉)
255, 6, 7, 8, 9clmvsubval 23285 . . . 4 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉𝐴𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2622, 23, 24, 25syl3anc 1494 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝐵(-g𝑊)𝐴) = (𝐵 + (-1 · 𝐴)))
2726fveq2d 6441 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐵(-g𝑊)𝐴)) = (𝑁‘(𝐵 + (-1 · 𝐴))))
2813, 21, 273eqtrd 2865 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑉𝐵𝑉) → (𝑁‘(𝐴 + (-1 · 𝐵))) = (𝑁‘(𝐵 + (-1 · 𝐴))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   ∧ w3a 1111   = wceq 1656   ∈ wcel 2164   ∩ cin 3797  ‘cfv 6127  (class class class)co 6910  1c1 10260  -cneg 10593  Basecbs 16229  +gcplusg 16312  Scalarcsca 16315   ·𝑠 cvsca 16316  -gcsg 17785  normcnm 22758  NrmGrpcngp 22759  NrmModcnlm 22762  NrmVeccnvc 22763  ℂModcclm 23238  ℂVecccvs 23299 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337  ax-addf 10338  ax-mulf 10339 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-1o 7831  df-oadd 7835  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-fin 8232  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-fz 12627  df-struct 16231  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-mulr 16326  df-starv 16327  df-tset 16331  df-ple 16332  df-ds 16334  df-unif 16335  df-0g 16462  df-topgen 16464  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cmn 18555  df-mgp 18851  df-ur 18863  df-ring 18910  df-cring 18911  df-subrg 19141  df-lmod 19228  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-cnfld 20114  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-xms 22502  df-ms 22503  df-nm 22764  df-ngp 22765  df-nlm 22768  df-nvc 22769  df-clm 23239  df-cvs 23300 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator