MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvspi Structured version   Visualization version   GIF version

Theorem ncvspi 25081
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
ncvspi.f 𝐹 = (Scalar‘𝑊)
ncvspi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvspi ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))

Proof of Theorem ncvspi
StepHypRef Expression
1 elin 3918 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 nvcnlm 24609 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
3 nlmngp 24590 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
54adantr 480 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
61, 5sylbi 217 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
763ad2ant1 1133 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
8 nvclmod 24611 . . . . . . . . . 10 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
9 lmodgrp 20798 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
108, 9syl 17 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ Grp)
1110adantr 480 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ Grp)
121, 11sylbi 217 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Grp)
13123ad2ant1 1133 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
14 simp2l 1200 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐴𝑉)
15 id 22 . . . . . . . . . 10 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
1615cvsclm 25051 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
171, 16simplbiim 504 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
18173ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
19 simp3 1138 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → i ∈ 𝐾)
20 simp2r 1201 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐵𝑉)
21 ncvsprp.v . . . . . . . 8 𝑉 = (Base‘𝑊)
22 ncvspi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
23 ncvsprp.s . . . . . . . 8 · = ( ·𝑠𝑊)
24 ncvspi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2521, 22, 23, 24clmvscl 25013 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾𝐵𝑉) → (i · 𝐵) ∈ 𝑉)
2618, 19, 20, 25syl3anc 1373 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (i · 𝐵) ∈ 𝑉)
27 ncvsdif.p . . . . . . 7 + = (+g𝑊)
2821, 27grpcl 18851 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
2913, 14, 26, 28syl3anc 1373 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
30 ncvsprp.n . . . . . 6 𝑁 = (norm‘𝑊)
3121, 30nmcl 24529 . . . . 5 ((𝑊 ∈ NrmGrp ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
327, 29, 31syl2anc 584 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3332recnd 11137 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ)
3433mullidd 11127 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐴 + (i · 𝐵))))
35 ax-icn 11062 . . . . . 6 i ∈ ℂ
3635absnegi 15305 . . . . 5 (abs‘-i) = (abs‘i)
37 absi 15190 . . . . 5 (abs‘i) = 1
3836, 37eqtri 2754 . . . 4 (abs‘-i) = 1
3938oveq1i 7356 . . 3 ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (1 · (𝑁‘(𝐴 + (i · 𝐵))))
40 simp1 1136 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ (NrmVec ∩ ℂVec))
4122, 24clmneg 25006 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4216, 41sylan 580 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4322clmfgrp 24996 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)
4416, 43syl 17 . . . . . . . . . . 11 (𝑊 ∈ ℂVec → 𝐹 ∈ Grp)
45 eqid 2731 . . . . . . . . . . . 12 (invg𝐹) = (invg𝐹)
4624, 45grpinvcl 18897 . . . . . . . . . . 11 ((𝐹 ∈ Grp ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4744, 46sylan 580 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4842, 47eqeltrd 2831 . . . . . . . . 9 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i ∈ 𝐾)
4948ex 412 . . . . . . . 8 (𝑊 ∈ ℂVec → (i ∈ 𝐾 → -i ∈ 𝐾))
501, 49simplbiim 504 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → (i ∈ 𝐾 → -i ∈ 𝐾))
5150imp 406 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
52513adant2 1131 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
5321, 30, 23, 22, 24ncvsprp 25077 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -i ∈ 𝐾 ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5440, 52, 29, 53syl3anc 1373 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5521, 22, 23, 24, 27clmvsdi 25017 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉)) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5618, 52, 14, 26, 55syl13anc 1374 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5735, 35mulneg1i 11560 . . . . . . . . . 10 (-i · i) = -(i · i)
58 ixi 11743 . . . . . . . . . . . 12 (i · i) = -1
5958negeqi 11350 . . . . . . . . . . 11 -(i · i) = --1
60 negneg1e1 12111 . . . . . . . . . . 11 --1 = 1
6159, 60eqtri 2754 . . . . . . . . . 10 -(i · i) = 1
6257, 61eqtri 2754 . . . . . . . . 9 (-i · i) = 1
6362oveq1i 7356 . . . . . . . 8 ((-i · i) · 𝐵) = (1 · 𝐵)
6421, 22, 23, 24clmvsass 25014 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾 ∧ i ∈ 𝐾𝐵𝑉)) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
6518, 52, 19, 20, 64syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
66 simpr 484 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
6717, 66anim12i 613 . . . . . . . . . 10 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉)) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
68673adant3 1132 . . . . . . . . 9 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
6921, 23clmvs1 25018 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
7068, 69syl 17 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · 𝐵) = 𝐵)
7163, 65, 703eqtr3a 2790 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (i · 𝐵)) = 𝐵)
7271oveq2d 7362 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + (-i · (i · 𝐵))) = ((-i · 𝐴) + 𝐵))
73 clmabl 24994 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
7416, 73syl 17 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ Abel)
751, 74simplbiim 504 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Abel)
76753ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Abel)
7721, 22, 23, 24clmvscl 25013 . . . . . . . 8 ((𝑊 ∈ ℂMod ∧ -i ∈ 𝐾𝐴𝑉) → (-i · 𝐴) ∈ 𝑉)
7818, 52, 14, 77syl3anc 1373 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · 𝐴) ∈ 𝑉)
7921, 27ablcom 19709 . . . . . . 7 ((𝑊 ∈ Abel ∧ (-i · 𝐴) ∈ 𝑉𝐵𝑉) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8076, 78, 20, 79syl3anc 1373 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8156, 72, 803eqtrd 2770 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = (𝐵 + (-i · 𝐴)))
8281fveq2d 6826 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8354, 82eqtr3d 2768 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8439, 83eqtr3id 2780 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8534, 84eqtr3d 2768 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cin 3901  cfv 6481  (class class class)co 7346  cr 11002  1c1 11004  ici 11005   · cmul 11008  -cneg 11342  abscabs 15138  Basecbs 17117  +gcplusg 17158  Scalarcsca 17161   ·𝑠 cvsca 17162  Grpcgrp 18843  invgcminusg 18844  Abelcabl 19691  LModclmod 20791  normcnm 24489  NrmGrpcngp 24490  NrmModcnlm 24493  NrmVeccnvc 24494  ℂModcclm 24987  ℂVecccvs 25048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081  ax-addf 11082  ax-mulf 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-fz 13405  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-struct 17055  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-starv 17173  df-tset 17177  df-ple 17178  df-ds 17180  df-unif 17181  df-0g 17342  df-topgen 17344  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-subg 19033  df-cmn 19692  df-abl 19693  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20483  df-lmod 20793  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-cnfld 21290  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-xms 24233  df-ms 24234  df-nm 24495  df-ngp 24496  df-nlm 24499  df-nvc 24500  df-clm 24988  df-cvs 25049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator