MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvspi Structured version   Visualization version   GIF version

Theorem ncvspi 25056
Description: The norm of a vector plus the imaginary scalar product of another. (Contributed by NM, 2-Feb-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsdif.p + = (+g𝑊)
ncvspi.f 𝐹 = (Scalar‘𝑊)
ncvspi.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvspi ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))

Proof of Theorem ncvspi
StepHypRef Expression
1 elin 3930 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 nvcnlm 24584 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
3 nlmngp 24565 . . . . . . . . 9 (𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp)
42, 3syl 17 . . . . . . . 8 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmGrp)
54adantr 480 . . . . . . 7 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmGrp)
61, 5sylbi 217 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmGrp)
763ad2ant1 1133 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ NrmGrp)
8 nvclmod 24586 . . . . . . . . . 10 (𝑊 ∈ NrmVec → 𝑊 ∈ LMod)
9 lmodgrp 20773 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
108, 9syl 17 . . . . . . . . 9 (𝑊 ∈ NrmVec → 𝑊 ∈ Grp)
1110adantr 480 . . . . . . . 8 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ Grp)
121, 11sylbi 217 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Grp)
13123ad2ant1 1133 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Grp)
14 simp2l 1200 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐴𝑉)
15 id 22 . . . . . . . . . 10 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
1615cvsclm 25026 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
171, 16simplbiim 504 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
18173ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ ℂMod)
19 simp3 1138 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → i ∈ 𝐾)
20 simp2r 1201 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝐵𝑉)
21 ncvsprp.v . . . . . . . 8 𝑉 = (Base‘𝑊)
22 ncvspi.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
23 ncvsprp.s . . . . . . . 8 · = ( ·𝑠𝑊)
24 ncvspi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
2521, 22, 23, 24clmvscl 24988 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾𝐵𝑉) → (i · 𝐵) ∈ 𝑉)
2618, 19, 20, 25syl3anc 1373 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (i · 𝐵) ∈ 𝑉)
27 ncvsdif.p . . . . . . 7 + = (+g𝑊)
2821, 27grpcl 18873 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
2913, 14, 26, 28syl3anc 1373 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝐴 + (i · 𝐵)) ∈ 𝑉)
30 ncvsprp.n . . . . . 6 𝑁 = (norm‘𝑊)
3121, 30nmcl 24504 . . . . 5 ((𝑊 ∈ NrmGrp ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
327, 29, 31syl2anc 584 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℝ)
3332recnd 11202 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) ∈ ℂ)
3433mullidd 11192 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐴 + (i · 𝐵))))
35 ax-icn 11127 . . . . . 6 i ∈ ℂ
3635absnegi 15367 . . . . 5 (abs‘-i) = (abs‘i)
37 absi 15252 . . . . 5 (abs‘i) = 1
3836, 37eqtri 2752 . . . 4 (abs‘-i) = 1
3938oveq1i 7397 . . 3 ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (1 · (𝑁‘(𝐴 + (i · 𝐵))))
40 simp1 1136 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ (NrmVec ∩ ℂVec))
4122, 24clmneg 24981 . . . . . . . . . . 11 ((𝑊 ∈ ℂMod ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4216, 41sylan 580 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i = ((invg𝐹)‘i))
4322clmfgrp 24971 . . . . . . . . . . . 12 (𝑊 ∈ ℂMod → 𝐹 ∈ Grp)
4416, 43syl 17 . . . . . . . . . . 11 (𝑊 ∈ ℂVec → 𝐹 ∈ Grp)
45 eqid 2729 . . . . . . . . . . . 12 (invg𝐹) = (invg𝐹)
4624, 45grpinvcl 18919 . . . . . . . . . . 11 ((𝐹 ∈ Grp ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4744, 46sylan 580 . . . . . . . . . 10 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → ((invg𝐹)‘i) ∈ 𝐾)
4842, 47eqeltrd 2828 . . . . . . . . 9 ((𝑊 ∈ ℂVec ∧ i ∈ 𝐾) → -i ∈ 𝐾)
4948ex 412 . . . . . . . 8 (𝑊 ∈ ℂVec → (i ∈ 𝐾 → -i ∈ 𝐾))
501, 49simplbiim 504 . . . . . . 7 (𝑊 ∈ (NrmVec ∩ ℂVec) → (i ∈ 𝐾 → -i ∈ 𝐾))
5150imp 406 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
52513adant2 1131 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → -i ∈ 𝐾)
5321, 30, 23, 22, 24ncvsprp 25052 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ -i ∈ 𝐾 ∧ (𝐴 + (i · 𝐵)) ∈ 𝑉) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5440, 52, 29, 53syl3anc 1373 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))))
5521, 22, 23, 24, 27clmvsdi 24992 . . . . . . 7 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾𝐴𝑉 ∧ (i · 𝐵) ∈ 𝑉)) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5618, 52, 14, 26, 55syl13anc 1374 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = ((-i · 𝐴) + (-i · (i · 𝐵))))
5735, 35mulneg1i 11624 . . . . . . . . . 10 (-i · i) = -(i · i)
58 ixi 11807 . . . . . . . . . . . 12 (i · i) = -1
5958negeqi 11414 . . . . . . . . . . 11 -(i · i) = --1
60 negneg1e1 12175 . . . . . . . . . . 11 --1 = 1
6159, 60eqtri 2752 . . . . . . . . . 10 -(i · i) = 1
6257, 61eqtri 2752 . . . . . . . . 9 (-i · i) = 1
6362oveq1i 7397 . . . . . . . 8 ((-i · i) · 𝐵) = (1 · 𝐵)
6421, 22, 23, 24clmvsass 24989 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ (-i ∈ 𝐾 ∧ i ∈ 𝐾𝐵𝑉)) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
6518, 52, 19, 20, 64syl13anc 1374 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · i) · 𝐵) = (-i · (i · 𝐵)))
66 simpr 484 . . . . . . . . . . 11 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
6717, 66anim12i 613 . . . . . . . . . 10 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉)) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
68673adant3 1132 . . . . . . . . 9 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑊 ∈ ℂMod ∧ 𝐵𝑉))
6921, 23clmvs1 24993 . . . . . . . . 9 ((𝑊 ∈ ℂMod ∧ 𝐵𝑉) → (1 · 𝐵) = 𝐵)
7068, 69syl 17 . . . . . . . 8 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · 𝐵) = 𝐵)
7163, 65, 703eqtr3a 2788 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (i · 𝐵)) = 𝐵)
7271oveq2d 7403 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + (-i · (i · 𝐵))) = ((-i · 𝐴) + 𝐵))
73 clmabl 24969 . . . . . . . . . 10 (𝑊 ∈ ℂMod → 𝑊 ∈ Abel)
7416, 73syl 17 . . . . . . . . 9 (𝑊 ∈ ℂVec → 𝑊 ∈ Abel)
751, 74simplbiim 504 . . . . . . . 8 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ Abel)
76753ad2ant1 1133 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → 𝑊 ∈ Abel)
7721, 22, 23, 24clmvscl 24988 . . . . . . . 8 ((𝑊 ∈ ℂMod ∧ -i ∈ 𝐾𝐴𝑉) → (-i · 𝐴) ∈ 𝑉)
7818, 52, 14, 77syl3anc 1373 . . . . . . 7 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · 𝐴) ∈ 𝑉)
7921, 27ablcom 19729 . . . . . . 7 ((𝑊 ∈ Abel ∧ (-i · 𝐴) ∈ 𝑉𝐵𝑉) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8076, 78, 20, 79syl3anc 1373 . . . . . 6 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((-i · 𝐴) + 𝐵) = (𝐵 + (-i · 𝐴)))
8156, 72, 803eqtrd 2768 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (-i · (𝐴 + (i · 𝐵))) = (𝐵 + (-i · 𝐴)))
8281fveq2d 6862 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(-i · (𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8354, 82eqtr3d 2766 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → ((abs‘-i) · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8439, 83eqtr3id 2778 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (1 · (𝑁‘(𝐴 + (i · 𝐵)))) = (𝑁‘(𝐵 + (-i · 𝐴))))
8534, 84eqtr3d 2766 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑉𝐵𝑉) ∧ i ∈ 𝐾) → (𝑁‘(𝐴 + (i · 𝐵))) = (𝑁‘(𝐵 + (-i · 𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069  ici 11070   · cmul 11073  -cneg 11406  abscabs 15200  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  invgcminusg 18866  Abelcabl 19711  LModclmod 20766  normcnm 24464  NrmGrpcngp 24465  NrmModcnlm 24468  NrmVeccnvc 24469  ℂModcclm 24962  ℂVecccvs 25023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-subrg 20479  df-lmod 20768  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471  df-nlm 24474  df-nvc 24475  df-clm 24963  df-cvs 25024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator