MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvspds Structured version   Visualization version   GIF version

Theorem ncvspds 25068
Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.)
Hypotheses
Ref Expression
ncvspds.n 𝑁 = (norm‘𝐺)
ncvspds.x 𝑋 = (Base‘𝐺)
ncvspds.p + = (+g𝐺)
ncvspds.d 𝐷 = (dist‘𝐺)
ncvspds.s · = ( ·𝑠𝐺)
Assertion
Ref Expression
ncvspds ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵))))

Proof of Theorem ncvspds
StepHypRef Expression
1 elin 3933 . . . 4 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
2 nvcnlm 24591 . . . . . 6 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
3 nlmngp 24572 . . . . . 6 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
42, 3syl 17 . . . . 5 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
54adantr 480 . . . 4 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
61, 5sylbi 217 . . 3 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
7 ncvspds.n . . . 4 𝑁 = (norm‘𝐺)
8 ncvspds.x . . . 4 𝑋 = (Base‘𝐺)
9 eqid 2730 . . . 4 (-g𝐺) = (-g𝐺)
10 ncvspds.d . . . 4 𝐷 = (dist‘𝐺)
117, 8, 9, 10ngpds 24499 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝐺)𝐵)))
126, 11syl3an1 1163 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝐺)𝐵)))
13 id 22 . . . . . 6 (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec)
1413cvsclm 25033 . . . . 5 (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod)
151, 14simplbiim 504 . . . 4 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod)
16 ncvspds.p . . . . 5 + = (+g𝐺)
17 eqid 2730 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
18 ncvspds.s . . . . 5 · = ( ·𝑠𝐺)
198, 16, 9, 17, 18clmvsubval 25016 . . . 4 ((𝐺 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝐺)𝐵) = (𝐴 + (-1 · 𝐵)))
2015, 19syl3an1 1163 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝐺)𝐵) = (𝐴 + (-1 · 𝐵)))
2120fveq2d 6865 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴(-g𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵))))
2212, 21eqtrd 2765 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3916  cfv 6514  (class class class)co 7390  1c1 11076  -cneg 11413  Basecbs 17186  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  distcds 17236  -gcsg 18874  normcnm 24471  NrmGrpcngp 24472  NrmModcnlm 24475  NrmVeccnvc 24476  ℂModcclm 24969  ℂVecccvs 25030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-fz 13476  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-topgen 17413  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cmn 19719  df-mgp 20057  df-ur 20098  df-ring 20151  df-cring 20152  df-subrg 20486  df-lmod 20775  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-xms 24215  df-ms 24216  df-nm 24477  df-ngp 24478  df-nlm 24481  df-nvc 24482  df-clm 24970  df-cvs 25031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator