MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvspds Structured version   Visualization version   GIF version

Theorem ncvspds 25077
Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.)
Hypotheses
Ref Expression
ncvspds.n 𝑁 = (norm‘𝐺)
ncvspds.x 𝑋 = (Base‘𝐺)
ncvspds.p + = (+g𝐺)
ncvspds.d 𝐷 = (dist‘𝐺)
ncvspds.s · = ( ·𝑠𝐺)
Assertion
Ref Expression
ncvspds ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵))))

Proof of Theorem ncvspds
StepHypRef Expression
1 elin 3921 . . . 4 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
2 nvcnlm 24600 . . . . . 6 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
3 nlmngp 24581 . . . . . 6 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
42, 3syl 17 . . . . 5 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
54adantr 480 . . . 4 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
61, 5sylbi 217 . . 3 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
7 ncvspds.n . . . 4 𝑁 = (norm‘𝐺)
8 ncvspds.x . . . 4 𝑋 = (Base‘𝐺)
9 eqid 2729 . . . 4 (-g𝐺) = (-g𝐺)
10 ncvspds.d . . . 4 𝐷 = (dist‘𝐺)
117, 8, 9, 10ngpds 24508 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝐺)𝐵)))
126, 11syl3an1 1163 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g𝐺)𝐵)))
13 id 22 . . . . . 6 (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec)
1413cvsclm 25042 . . . . 5 (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod)
151, 14simplbiim 504 . . . 4 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod)
16 ncvspds.p . . . . 5 + = (+g𝐺)
17 eqid 2729 . . . . 5 (Scalar‘𝐺) = (Scalar‘𝐺)
18 ncvspds.s . . . . 5 · = ( ·𝑠𝐺)
198, 16, 9, 17, 18clmvsubval 25025 . . . 4 ((𝐺 ∈ ℂMod ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝐺)𝐵) = (𝐴 + (-1 · 𝐵)))
2015, 19syl3an1 1163 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴(-g𝐺)𝐵) = (𝐴 + (-1 · 𝐵)))
2120fveq2d 6830 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝑁‘(𝐴(-g𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵))))
2212, 21eqtrd 2764 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3904  cfv 6486  (class class class)co 7353  1c1 11029  -cneg 11366  Basecbs 17138  +gcplusg 17179  Scalarcsca 17182   ·𝑠 cvsca 17183  distcds 17188  -gcsg 18832  normcnm 24480  NrmGrpcngp 24481  NrmModcnlm 24484  NrmVeccnvc 24485  ℂModcclm 24978  ℂVecccvs 25039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-fz 13429  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-0g 17363  df-topgen 17365  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cmn 19679  df-mgp 20044  df-ur 20085  df-ring 20138  df-cring 20139  df-subrg 20473  df-lmod 20783  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-xms 24224  df-ms 24225  df-nm 24486  df-ngp 24487  df-nlm 24490  df-nvc 24491  df-clm 24979  df-cvs 25040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator