| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncvspds | Structured version Visualization version GIF version | ||
| Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| ncvspds.n | ⊢ 𝑁 = (norm‘𝐺) |
| ncvspds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ncvspds.p | ⊢ + = (+g‘𝐺) |
| ncvspds.d | ⊢ 𝐷 = (dist‘𝐺) |
| ncvspds.s | ⊢ · = ( ·𝑠 ‘𝐺) |
| Ref | Expression |
|---|---|
| ncvspds | ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3933 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec)) | |
| 2 | nvcnlm 24591 | . . . . . 6 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod) | |
| 3 | nlmngp 24572 | . . . . . 6 ⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp) |
| 6 | 1, 5 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp) |
| 7 | ncvspds.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
| 8 | ncvspds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | eqid 2730 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 10 | ncvspds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
| 11 | 7, 8, 9, 10 | ngpds 24499 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 12 | 6, 11 | syl3an1 1163 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 13 | id 22 | . . . . . 6 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec) | |
| 14 | 13 | cvsclm 25033 | . . . . 5 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod) |
| 15 | 1, 14 | simplbiim 504 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod) |
| 16 | ncvspds.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 17 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝐺) = (Scalar‘𝐺) | |
| 18 | ncvspds.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐺) | |
| 19 | 8, 16, 9, 17, 18 | clmvsubval 25016 | . . . 4 ⊢ ((𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 20 | 15, 19 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 21 | 20 | fveq2d 6865 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| 22 | 12, 21 | eqtrd 2765 | 1 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3916 ‘cfv 6514 (class class class)co 7390 1c1 11076 -cneg 11413 Basecbs 17186 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 distcds 17236 -gcsg 18874 normcnm 24471 NrmGrpcngp 24472 NrmModcnlm 24475 NrmVeccnvc 24476 ℂModcclm 24969 ℂVecccvs 25030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-0g 17411 df-topgen 17413 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-cmn 19719 df-mgp 20057 df-ur 20098 df-ring 20151 df-cring 20152 df-subrg 20486 df-lmod 20775 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-xms 24215 df-ms 24216 df-nm 24477 df-ngp 24478 df-nlm 24481 df-nvc 24482 df-clm 24970 df-cvs 25031 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |