| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncvspds | Structured version Visualization version GIF version | ||
| Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| ncvspds.n | ⊢ 𝑁 = (norm‘𝐺) |
| ncvspds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ncvspds.p | ⊢ + = (+g‘𝐺) |
| ncvspds.d | ⊢ 𝐷 = (dist‘𝐺) |
| ncvspds.s | ⊢ · = ( ·𝑠 ‘𝐺) |
| Ref | Expression |
|---|---|
| ncvspds | ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3921 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec)) | |
| 2 | nvcnlm 24600 | . . . . . 6 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod) | |
| 3 | nlmngp 24581 | . . . . . 6 ⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp) |
| 6 | 1, 5 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp) |
| 7 | ncvspds.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
| 8 | ncvspds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | eqid 2729 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 10 | ncvspds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
| 11 | 7, 8, 9, 10 | ngpds 24508 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 12 | 6, 11 | syl3an1 1163 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 13 | id 22 | . . . . . 6 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec) | |
| 14 | 13 | cvsclm 25042 | . . . . 5 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod) |
| 15 | 1, 14 | simplbiim 504 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod) |
| 16 | ncvspds.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 17 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝐺) = (Scalar‘𝐺) | |
| 18 | ncvspds.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐺) | |
| 19 | 8, 16, 9, 17, 18 | clmvsubval 25025 | . . . 4 ⊢ ((𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 20 | 15, 19 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 21 | 20 | fveq2d 6830 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| 22 | 12, 21 | eqtrd 2764 | 1 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ‘cfv 6486 (class class class)co 7353 1c1 11029 -cneg 11366 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 distcds 17188 -gcsg 18832 normcnm 24480 NrmGrpcngp 24481 NrmModcnlm 24484 NrmVeccnvc 24485 ℂModcclm 24978 ℂVecccvs 25039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-fz 13429 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-0g 17363 df-topgen 17365 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-mgp 20044 df-ur 20085 df-ring 20138 df-cring 20139 df-subrg 20473 df-lmod 20783 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-xms 24224 df-ms 24225 df-nm 24486 df-ngp 24487 df-nlm 24490 df-nvc 24491 df-clm 24979 df-cvs 25040 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |