![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvspds | Structured version Visualization version GIF version |
Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
Ref | Expression |
---|---|
ncvspds.n | β’ π = (normβπΊ) |
ncvspds.x | β’ π = (BaseβπΊ) |
ncvspds.p | β’ + = (+gβπΊ) |
ncvspds.d | β’ π· = (distβπΊ) |
ncvspds.s | β’ Β· = ( Β·π βπΊ) |
Ref | Expression |
---|---|
ncvspds | β’ ((πΊ β (NrmVec β© βVec) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄ + (-1 Β· π΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3959 | . . . 4 β’ (πΊ β (NrmVec β© βVec) β (πΊ β NrmVec β§ πΊ β βVec)) | |
2 | nvcnlm 24563 | . . . . . 6 β’ (πΊ β NrmVec β πΊ β NrmMod) | |
3 | nlmngp 24544 | . . . . . 6 β’ (πΊ β NrmMod β πΊ β NrmGrp) | |
4 | 2, 3 | syl 17 | . . . . 5 β’ (πΊ β NrmVec β πΊ β NrmGrp) |
5 | 4 | adantr 480 | . . . 4 β’ ((πΊ β NrmVec β§ πΊ β βVec) β πΊ β NrmGrp) |
6 | 1, 5 | sylbi 216 | . . 3 β’ (πΊ β (NrmVec β© βVec) β πΊ β NrmGrp) |
7 | ncvspds.n | . . . 4 β’ π = (normβπΊ) | |
8 | ncvspds.x | . . . 4 β’ π = (BaseβπΊ) | |
9 | eqid 2726 | . . . 4 β’ (-gβπΊ) = (-gβπΊ) | |
10 | ncvspds.d | . . . 4 β’ π· = (distβπΊ) | |
11 | 7, 8, 9, 10 | ngpds 24463 | . . 3 β’ ((πΊ β NrmGrp β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄(-gβπΊ)π΅))) |
12 | 6, 11 | syl3an1 1160 | . 2 β’ ((πΊ β (NrmVec β© βVec) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄(-gβπΊ)π΅))) |
13 | id 22 | . . . . . 6 β’ (πΊ β βVec β πΊ β βVec) | |
14 | 13 | cvsclm 25003 | . . . . 5 β’ (πΊ β βVec β πΊ β βMod) |
15 | 1, 14 | simplbiim 504 | . . . 4 β’ (πΊ β (NrmVec β© βVec) β πΊ β βMod) |
16 | ncvspds.p | . . . . 5 β’ + = (+gβπΊ) | |
17 | eqid 2726 | . . . . 5 β’ (ScalarβπΊ) = (ScalarβπΊ) | |
18 | ncvspds.s | . . . . 5 β’ Β· = ( Β·π βπΊ) | |
19 | 8, 16, 9, 17, 18 | clmvsubval 24986 | . . . 4 β’ ((πΊ β βMod β§ π΄ β π β§ π΅ β π) β (π΄(-gβπΊ)π΅) = (π΄ + (-1 Β· π΅))) |
20 | 15, 19 | syl3an1 1160 | . . 3 β’ ((πΊ β (NrmVec β© βVec) β§ π΄ β π β§ π΅ β π) β (π΄(-gβπΊ)π΅) = (π΄ + (-1 Β· π΅))) |
21 | 20 | fveq2d 6888 | . 2 β’ ((πΊ β (NrmVec β© βVec) β§ π΄ β π β§ π΅ β π) β (πβ(π΄(-gβπΊ)π΅)) = (πβ(π΄ + (-1 Β· π΅)))) |
22 | 12, 21 | eqtrd 2766 | 1 β’ ((πΊ β (NrmVec β© βVec) β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄ + (-1 Β· π΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β© cin 3942 βcfv 6536 (class class class)co 7404 1c1 11110 -cneg 11446 Basecbs 17150 +gcplusg 17203 Scalarcsca 17206 Β·π cvsca 17207 distcds 17212 -gcsg 18862 normcnm 24435 NrmGrpcngp 24436 NrmModcnlm 24439 NrmVeccnvc 24440 βModcclm 24939 βVecccvs 25000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-fz 13488 df-struct 17086 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-mulr 17217 df-starv 17218 df-tset 17222 df-ple 17223 df-ds 17225 df-unif 17226 df-0g 17393 df-topgen 17395 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-minusg 18864 df-sbg 18865 df-subg 19047 df-cmn 19699 df-mgp 20037 df-ur 20084 df-ring 20137 df-cring 20138 df-subrg 20468 df-lmod 20705 df-psmet 21227 df-xmet 21228 df-met 21229 df-bl 21230 df-mopn 21231 df-cnfld 21236 df-top 22746 df-topon 22763 df-topsp 22785 df-bases 22799 df-xms 24176 df-ms 24177 df-nm 24441 df-ngp 24442 df-nlm 24445 df-nvc 24446 df-clm 24940 df-cvs 25001 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |