| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncvspds | Structured version Visualization version GIF version | ||
| Description: Value of the distance function in terms of the norm of a normed subcomplex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 28-Nov-2006.) (Revised by AV, 13-Oct-2021.) |
| Ref | Expression |
|---|---|
| ncvspds.n | ⊢ 𝑁 = (norm‘𝐺) |
| ncvspds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ncvspds.p | ⊢ + = (+g‘𝐺) |
| ncvspds.d | ⊢ 𝐷 = (dist‘𝐺) |
| ncvspds.s | ⊢ · = ( ·𝑠 ‘𝐺) |
| Ref | Expression |
|---|---|
| ncvspds | ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec)) | |
| 2 | nvcnlm 24612 | . . . . . 6 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod) | |
| 3 | nlmngp 24593 | . . . . . 6 ⊢ (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp) |
| 6 | 1, 5 | sylbi 217 | . . 3 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp) |
| 7 | ncvspds.n | . . . 4 ⊢ 𝑁 = (norm‘𝐺) | |
| 8 | ncvspds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 9 | eqid 2733 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 10 | ncvspds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
| 11 | 7, 8, 9, 10 | ngpds 24520 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 12 | 6, 11 | syl3an1 1163 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴(-g‘𝐺)𝐵))) |
| 13 | id 22 | . . . . . 6 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂVec) | |
| 14 | 13 | cvsclm 25054 | . . . . 5 ⊢ (𝐺 ∈ ℂVec → 𝐺 ∈ ℂMod) |
| 15 | 1, 14 | simplbiim 504 | . . . 4 ⊢ (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ ℂMod) |
| 16 | ncvspds.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 17 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝐺) = (Scalar‘𝐺) | |
| 18 | ncvspds.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝐺) | |
| 19 | 8, 16, 9, 17, 18 | clmvsubval 25037 | . . . 4 ⊢ ((𝐺 ∈ ℂMod ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 20 | 15, 19 | syl3an1 1163 | . . 3 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(-g‘𝐺)𝐵) = (𝐴 + (-1 · 𝐵))) |
| 21 | 20 | fveq2d 6832 | . 2 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴(-g‘𝐺)𝐵)) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| 22 | 12, 21 | eqtrd 2768 | 1 ⊢ ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴 + (-1 · 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ‘cfv 6486 (class class class)co 7352 1c1 11014 -cneg 11352 Basecbs 17122 +gcplusg 17163 Scalarcsca 17166 ·𝑠 cvsca 17167 distcds 17172 -gcsg 18850 normcnm 24492 NrmGrpcngp 24493 NrmModcnlm 24496 NrmVeccnvc 24497 ℂModcclm 24990 ℂVecccvs 25051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-0g 17347 df-topgen 17349 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cmn 19696 df-mgp 20061 df-ur 20102 df-ring 20155 df-cring 20156 df-subrg 20487 df-lmod 20797 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-xms 24236 df-ms 24237 df-nm 24498 df-ngp 24499 df-nlm 24502 df-nvc 24503 df-clm 24991 df-cvs 25052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |