MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvsprp Structured version   Visualization version   GIF version

Theorem ncvsprp 23359
Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvsprp.v 𝑉 = (Base‘𝑊)
ncvsprp.n 𝑁 = (norm‘𝑊)
ncvsprp.s · = ( ·𝑠𝑊)
ncvsprp.f 𝐹 = (Scalar‘𝑊)
ncvsprp.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvsprp ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))

Proof of Theorem ncvsprp
StepHypRef Expression
1 elin 4019 . . . 4 (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec))
2 nvcnlm 22908 . . . . 5 (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod)
32adantr 474 . . . 4 ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmMod)
41, 3sylbi 209 . . 3 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmMod)
5 ncvsprp.v . . . 4 𝑉 = (Base‘𝑊)
6 ncvsprp.n . . . 4 𝑁 = (norm‘𝑊)
7 ncvsprp.s . . . 4 · = ( ·𝑠𝑊)
8 ncvsprp.f . . . 4 𝐹 = (Scalar‘𝑊)
9 ncvsprp.k . . . 4 𝐾 = (Base‘𝐹)
10 eqid 2778 . . . 4 (norm‘𝐹) = (norm‘𝐹)
115, 6, 7, 8, 9, 10nmvs 22888 . . 3 ((𝑊 ∈ NrmMod ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁𝐵)))
124, 11syl3an1 1163 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁𝐵)))
13 id 22 . . . . . . . 8 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec)
1413cvsclm 23333 . . . . . . 7 (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod)
151, 14simplbiim 500 . . . . . 6 (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod)
168, 9clmabs 23290 . . . . . 6 ((𝑊 ∈ ℂMod ∧ 𝐴𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))
1715, 16sylan 575 . . . . 5 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))
18173adant3 1123 . . . 4 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴))
1918eqcomd 2784 . . 3 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → ((norm‘𝐹)‘𝐴) = (abs‘𝐴))
2019oveq1d 6937 . 2 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (((norm‘𝐹)‘𝐴) · (𝑁𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
2112, 20eqtrd 2814 1 ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝐾𝐵𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cin 3791  cfv 6135  (class class class)co 6922   · cmul 10277  abscabs 14381  Basecbs 16255  Scalarcsca 16341   ·𝑠 cvsca 16342  normcnm 22789  NrmModcnlm 22793  NrmVeccnvc 22794  ℂModcclm 23269  ℂVecccvs 23330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-rp 12138  df-fz 12644  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-subg 17975  df-cmn 18581  df-mgp 18877  df-ring 18936  df-cring 18937  df-subrg 19170  df-cnfld 20143  df-nm 22795  df-nlm 22799  df-nvc 22800  df-clm 23270  df-cvs 23331
This theorem is referenced by:  ncvsge0  23360  ncvsm1  23361  ncvspi  23363
  Copyright terms: Public domain W3C validator