| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version | ||
| Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| ncvsprp.v | ⊢ 𝑉 = (Base‘𝑊) |
| ncvsprp.n | ⊢ 𝑁 = (norm‘𝑊) |
| ncvsprp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| ncvsprp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ncvsprp.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| ncvsprp | ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3914 | . . . 4 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec)) | |
| 2 | nvcnlm 24612 | . . . . 5 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmMod) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmMod) |
| 5 | ncvsprp.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | ncvsprp.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 7 | ncvsprp.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | ncvsprp.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 9 | ncvsprp.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2733 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 11 | 5, 6, 7, 8, 9, 10 | nmvs 24592 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
| 12 | 4, 11 | syl3an1 1163 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec) | |
| 14 | 13 | cvsclm 25054 | . . . . . . 7 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
| 15 | 1, 14 | simplbiim 504 | . . . . . 6 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod) |
| 16 | 8, 9 | clmabs 25011 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 17 | 15, 16 | sylan 580 | . . . . 5 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 18 | 17 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 19 | 18 | eqcomd 2739 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) = (abs‘𝐴)) |
| 20 | 19 | oveq1d 7367 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 21 | 12, 20 | eqtrd 2768 | 1 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∩ cin 3897 ‘cfv 6486 (class class class)co 7352 · cmul 11018 abscabs 15143 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 normcnm 24492 NrmModcnlm 24496 NrmVeccnvc 24497 ℂModcclm 24990 ℂVecccvs 25051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-rp 12893 df-fz 13410 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-subg 19038 df-cmn 19696 df-mgp 20061 df-ring 20155 df-cring 20156 df-subrg 20487 df-cnfld 21294 df-nm 24498 df-nlm 24502 df-nvc 24503 df-clm 24991 df-cvs 25052 |
| This theorem is referenced by: ncvsge0 25081 ncvsm1 25082 ncvspi 25084 |
| Copyright terms: Public domain | W3C validator |