![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | β’ π = (Baseβπ) |
ncvsprp.n | β’ π = (normβπ) |
ncvsprp.s | β’ Β· = ( Β·π βπ) |
ncvsprp.f | β’ πΉ = (Scalarβπ) |
ncvsprp.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
ncvsprp | β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((absβπ΄) Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3963 | . . . 4 β’ (π β (NrmVec β© βVec) β (π β NrmVec β§ π β βVec)) | |
2 | nvcnlm 24204 | . . . . 5 β’ (π β NrmVec β π β NrmMod) | |
3 | 2 | adantr 481 | . . . 4 β’ ((π β NrmVec β§ π β βVec) β π β NrmMod) |
4 | 1, 3 | sylbi 216 | . . 3 β’ (π β (NrmVec β© βVec) β π β NrmMod) |
5 | ncvsprp.v | . . . 4 β’ π = (Baseβπ) | |
6 | ncvsprp.n | . . . 4 β’ π = (normβπ) | |
7 | ncvsprp.s | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | ncvsprp.f | . . . 4 β’ πΉ = (Scalarβπ) | |
9 | ncvsprp.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
10 | eqid 2732 | . . . 4 β’ (normβπΉ) = (normβπΉ) | |
11 | 5, 6, 7, 8, 9, 10 | nmvs 24184 | . . 3 β’ ((π β NrmMod β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = (((normβπΉ)βπ΄) Β· (πβπ΅))) |
12 | 4, 11 | syl3an1 1163 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = (((normβπΉ)βπ΄) Β· (πβπ΅))) |
13 | id 22 | . . . . . . . 8 β’ (π β βVec β π β βVec) | |
14 | 13 | cvsclm 24633 | . . . . . . 7 β’ (π β βVec β π β βMod) |
15 | 1, 14 | simplbiim 505 | . . . . . 6 β’ (π β (NrmVec β© βVec) β π β βMod) |
16 | 8, 9 | clmabs 24590 | . . . . . 6 β’ ((π β βMod β§ π΄ β πΎ) β (absβπ΄) = ((normβπΉ)βπ΄)) |
17 | 15, 16 | sylan 580 | . . . . 5 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ) β (absβπ΄) = ((normβπΉ)βπ΄)) |
18 | 17 | 3adant3 1132 | . . . 4 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (absβπ΄) = ((normβπΉ)βπ΄)) |
19 | 18 | eqcomd 2738 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β ((normβπΉ)βπ΄) = (absβπ΄)) |
20 | 19 | oveq1d 7420 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (((normβπΉ)βπ΄) Β· (πβπ΅)) = ((absβπ΄) Β· (πβπ΅))) |
21 | 12, 20 | eqtrd 2772 | 1 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((absβπ΄) Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 β© cin 3946 βcfv 6540 (class class class)co 7405 Β· cmul 11111 abscabs 15177 Basecbs 17140 Scalarcsca 17196 Β·π cvsca 17197 normcnm 24076 NrmModcnlm 24080 NrmVeccnvc 24081 βModcclm 24569 βVecccvs 24630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 ax-addf 11185 ax-mulf 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-rp 12971 df-fz 13481 df-seq 13963 df-exp 14024 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-subg 18997 df-cmn 19644 df-mgp 19982 df-ring 20051 df-cring 20052 df-subrg 20353 df-cnfld 20937 df-nm 24082 df-nlm 24086 df-nvc 24087 df-clm 24570 df-cvs 24631 |
This theorem is referenced by: ncvsge0 24661 ncvsm1 24662 ncvspi 24664 |
Copyright terms: Public domain | W3C validator |