Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | ⊢ 𝑉 = (Base‘𝑊) |
ncvsprp.n | ⊢ 𝑁 = (norm‘𝑊) |
ncvsprp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ncvsprp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ncvsprp.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
ncvsprp | ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3908 | . . . 4 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec)) | |
2 | nvcnlm 23905 | . . . . 5 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
3 | 2 | adantr 482 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmMod) |
4 | 1, 3 | sylbi 216 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmMod) |
5 | ncvsprp.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
6 | ncvsprp.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
7 | ncvsprp.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | ncvsprp.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | ncvsprp.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2736 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | nmvs 23885 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
12 | 4, 11 | syl3an1 1163 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
13 | id 22 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec) | |
14 | 13 | cvsclm 24334 | . . . . . . 7 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
15 | 1, 14 | simplbiim 506 | . . . . . 6 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod) |
16 | 8, 9 | clmabs 24291 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
17 | 15, 16 | sylan 581 | . . . . 5 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
18 | 17 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
19 | 18 | eqcomd 2742 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) = (abs‘𝐴)) |
20 | 19 | oveq1d 7322 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
21 | 12, 20 | eqtrd 2776 | 1 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ∩ cin 3891 ‘cfv 6458 (class class class)co 7307 · cmul 10922 abscabs 14990 Basecbs 16957 Scalarcsca 17010 ·𝑠 cvsca 17011 normcnm 23777 NrmModcnlm 23781 NrmVeccnvc 23782 ℂModcclm 24270 ℂVecccvs 24331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 ax-addf 10996 ax-mulf 10997 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9245 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-rp 12777 df-fz 13286 df-seq 13768 df-exp 13829 df-cj 14855 df-re 14856 df-im 14857 df-sqrt 14991 df-abs 14992 df-struct 16893 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-mulr 17021 df-starv 17022 df-tset 17026 df-ple 17027 df-ds 17029 df-unif 17030 df-0g 17197 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-grp 18625 df-subg 18797 df-cmn 19433 df-mgp 19766 df-ring 19830 df-cring 19831 df-subrg 20067 df-cnfld 20643 df-nm 23783 df-nlm 23787 df-nvc 23788 df-clm 24271 df-cvs 24332 |
This theorem is referenced by: ncvsge0 24362 ncvsm1 24363 ncvspi 24365 |
Copyright terms: Public domain | W3C validator |