![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | β’ π = (Baseβπ) |
ncvsprp.n | β’ π = (normβπ) |
ncvsprp.s | β’ Β· = ( Β·π βπ) |
ncvsprp.f | β’ πΉ = (Scalarβπ) |
ncvsprp.k | β’ πΎ = (BaseβπΉ) |
Ref | Expression |
---|---|
ncvsprp | β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((absβπ΄) Β· (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3959 | . . . 4 β’ (π β (NrmVec β© βVec) β (π β NrmVec β§ π β βVec)) | |
2 | nvcnlm 24564 | . . . . 5 β’ (π β NrmVec β π β NrmMod) | |
3 | 2 | adantr 480 | . . . 4 β’ ((π β NrmVec β§ π β βVec) β π β NrmMod) |
4 | 1, 3 | sylbi 216 | . . 3 β’ (π β (NrmVec β© βVec) β π β NrmMod) |
5 | ncvsprp.v | . . . 4 β’ π = (Baseβπ) | |
6 | ncvsprp.n | . . . 4 β’ π = (normβπ) | |
7 | ncvsprp.s | . . . 4 β’ Β· = ( Β·π βπ) | |
8 | ncvsprp.f | . . . 4 β’ πΉ = (Scalarβπ) | |
9 | ncvsprp.k | . . . 4 β’ πΎ = (BaseβπΉ) | |
10 | eqid 2726 | . . . 4 β’ (normβπΉ) = (normβπΉ) | |
11 | 5, 6, 7, 8, 9, 10 | nmvs 24544 | . . 3 β’ ((π β NrmMod β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = (((normβπΉ)βπ΄) Β· (πβπ΅))) |
12 | 4, 11 | syl3an1 1160 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = (((normβπΉ)βπ΄) Β· (πβπ΅))) |
13 | id 22 | . . . . . . . 8 β’ (π β βVec β π β βVec) | |
14 | 13 | cvsclm 25004 | . . . . . . 7 β’ (π β βVec β π β βMod) |
15 | 1, 14 | simplbiim 504 | . . . . . 6 β’ (π β (NrmVec β© βVec) β π β βMod) |
16 | 8, 9 | clmabs 24961 | . . . . . 6 β’ ((π β βMod β§ π΄ β πΎ) β (absβπ΄) = ((normβπΉ)βπ΄)) |
17 | 15, 16 | sylan 579 | . . . . 5 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ) β (absβπ΄) = ((normβπΉ)βπ΄)) |
18 | 17 | 3adant3 1129 | . . . 4 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (absβπ΄) = ((normβπΉ)βπ΄)) |
19 | 18 | eqcomd 2732 | . . 3 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β ((normβπΉ)βπ΄) = (absβπ΄)) |
20 | 19 | oveq1d 7419 | . 2 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (((normβπΉ)βπ΄) Β· (πβπ΅)) = ((absβπ΄) Β· (πβπ΅))) |
21 | 12, 20 | eqtrd 2766 | 1 β’ ((π β (NrmVec β© βVec) β§ π΄ β πΎ β§ π΅ β π) β (πβ(π΄ Β· π΅)) = ((absβπ΄) Β· (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β© cin 3942 βcfv 6536 (class class class)co 7404 Β· cmul 11114 abscabs 15185 Basecbs 17151 Scalarcsca 17207 Β·π cvsca 17208 normcnm 24436 NrmModcnlm 24440 NrmVeccnvc 24441 βModcclm 24940 βVecccvs 25001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-rp 12978 df-fz 13488 df-seq 13970 df-exp 14031 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-subg 19048 df-cmn 19700 df-mgp 20038 df-ring 20138 df-cring 20139 df-subrg 20469 df-cnfld 21237 df-nm 24442 df-nlm 24446 df-nvc 24447 df-clm 24941 df-cvs 25002 |
This theorem is referenced by: ncvsge0 25032 ncvsm1 25033 ncvspi 25035 |
Copyright terms: Public domain | W3C validator |