Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version |
Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
Ref | Expression |
---|---|
ncvsprp.v | ⊢ 𝑉 = (Base‘𝑊) |
ncvsprp.n | ⊢ 𝑁 = (norm‘𝑊) |
ncvsprp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
ncvsprp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ncvsprp.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
ncvsprp | ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3859 | . . . 4 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec)) | |
2 | nvcnlm 23449 | . . . . 5 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
3 | 2 | adantr 484 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmMod) |
4 | 1, 3 | sylbi 220 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmMod) |
5 | ncvsprp.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
6 | ncvsprp.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
7 | ncvsprp.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | ncvsprp.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
9 | ncvsprp.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
10 | eqid 2738 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
11 | 5, 6, 7, 8, 9, 10 | nmvs 23429 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
12 | 4, 11 | syl3an1 1164 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
13 | id 22 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec) | |
14 | 13 | cvsclm 23878 | . . . . . . 7 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
15 | 1, 14 | simplbiim 508 | . . . . . 6 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod) |
16 | 8, 9 | clmabs 23835 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
17 | 15, 16 | sylan 583 | . . . . 5 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
18 | 17 | 3adant3 1133 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
19 | 18 | eqcomd 2744 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) = (abs‘𝐴)) |
20 | 19 | oveq1d 7185 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
21 | 12, 20 | eqtrd 2773 | 1 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ∩ cin 3842 ‘cfv 6339 (class class class)co 7170 · cmul 10620 abscabs 14683 Basecbs 16586 Scalarcsca 16671 ·𝑠 cvsca 16672 normcnm 23329 NrmModcnlm 23333 NrmVeccnvc 23334 ℂModcclm 23814 ℂVecccvs 23875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 ax-addf 10694 ax-mulf 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-rp 12473 df-fz 12982 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-starv 16683 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-0g 16818 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-grp 18222 df-subg 18394 df-cmn 19026 df-mgp 19359 df-ring 19418 df-cring 19419 df-subrg 19652 df-cnfld 20218 df-nm 23335 df-nlm 23339 df-nvc 23340 df-clm 23815 df-cvs 23876 |
This theorem is referenced by: ncvsge0 23905 ncvsm1 23906 ncvspi 23908 |
Copyright terms: Public domain | W3C validator |