| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ncvsprp | Structured version Visualization version GIF version | ||
| Description: Proportionality property of the norm of a scalar product in a normed subcomplex vector space. (Contributed by NM, 11-Nov-2006.) (Revised by AV, 8-Oct-2021.) |
| Ref | Expression |
|---|---|
| ncvsprp.v | ⊢ 𝑉 = (Base‘𝑊) |
| ncvsprp.n | ⊢ 𝑁 = (norm‘𝑊) |
| ncvsprp.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| ncvsprp.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| ncvsprp.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| ncvsprp | ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin 3930 | . . . 4 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) ↔ (𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec)) | |
| 2 | nvcnlm 24584 | . . . . 5 ⊢ (𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ NrmVec ∧ 𝑊 ∈ ℂVec) → 𝑊 ∈ NrmMod) |
| 4 | 1, 3 | sylbi 217 | . . 3 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ NrmMod) |
| 5 | ncvsprp.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | ncvsprp.n | . . . 4 ⊢ 𝑁 = (norm‘𝑊) | |
| 7 | ncvsprp.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | ncvsprp.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 9 | ncvsprp.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 10 | eqid 2729 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
| 11 | 5, 6, 7, 8, 9, 10 | nmvs 24564 | . . 3 ⊢ ((𝑊 ∈ NrmMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
| 12 | 4, 11 | syl3an1 1163 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵))) |
| 13 | id 22 | . . . . . . . 8 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂVec) | |
| 14 | 13 | cvsclm 25026 | . . . . . . 7 ⊢ (𝑊 ∈ ℂVec → 𝑊 ∈ ℂMod) |
| 15 | 1, 14 | simplbiim 504 | . . . . . 6 ⊢ (𝑊 ∈ (NrmVec ∩ ℂVec) → 𝑊 ∈ ℂMod) |
| 16 | 8, 9 | clmabs 24983 | . . . . . 6 ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 17 | 15, 16 | sylan 580 | . . . . 5 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 18 | 17 | 3adant3 1132 | . . . 4 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (abs‘𝐴) = ((norm‘𝐹)‘𝐴)) |
| 19 | 18 | eqcomd 2735 | . . 3 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → ((norm‘𝐹)‘𝐴) = (abs‘𝐴)) |
| 20 | 19 | oveq1d 7402 | . 2 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (((norm‘𝐹)‘𝐴) · (𝑁‘𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| 21 | 12, 20 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉) → (𝑁‘(𝐴 · 𝐵)) = ((abs‘𝐴) · (𝑁‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 ‘cfv 6511 (class class class)co 7387 · cmul 11073 abscabs 15200 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 normcnm 24464 NrmModcnlm 24468 NrmVeccnvc 24469 ℂModcclm 24962 ℂVecccvs 25023 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-fz 13469 df-seq 13967 df-exp 14027 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-subg 19055 df-cmn 19712 df-mgp 20050 df-ring 20144 df-cring 20145 df-subrg 20479 df-cnfld 21265 df-nm 24470 df-nlm 24474 df-nvc 24475 df-clm 24963 df-cvs 25024 |
| This theorem is referenced by: ncvsge0 25053 ncvsm1 25054 ncvspi 25056 |
| Copyright terms: Public domain | W3C validator |