MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   GIF version

Theorem ncvs1 23676
Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x 𝑋 = (Base‘𝐺)
ncvs1.n 𝑁 = (norm‘𝐺)
ncvs1.z 0 = (0g𝐺)
ncvs1.s · = ( ·𝑠𝐺)
ncvs1.f 𝐹 = (Scalar‘𝐺)
ncvs1.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvs1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1130 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐺 ∈ (NrmVec ∩ ℂVec))
2 simp3 1132 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ 𝐾)
3 elin 4172 . . . . . . . . 9 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
4 nvcnlm 23220 . . . . . . . . . . 11 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
5 nlmngp 23201 . . . . . . . . . . 11 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
76adantr 481 . . . . . . . . 9 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
83, 7sylbi 218 . . . . . . . 8 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
9 simpl 483 . . . . . . . 8 ((𝐴𝑋𝐴0 ) → 𝐴𝑋)
108, 9anim12i 612 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
11 ncvs1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
12 ncvs1.n . . . . . . . 8 𝑁 = (norm‘𝐺)
1311, 12nmcl 23140 . . . . . . 7 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1410, 13syl 17 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ∈ ℝ)
15 ncvs1.z . . . . . . . . . . . 12 0 = (0g𝐺)
1611, 12, 15nmeq0 23142 . . . . . . . . . . 11 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
1716bicomd 224 . . . . . . . . . 10 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
188, 17sylan 580 . . . . . . . . 9 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
1918necon3bid 3064 . . . . . . . 8 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 ↔ (𝑁𝐴) ≠ 0))
2019biimpd 230 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 → (𝑁𝐴) ≠ 0))
2120impr 455 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ≠ 0)
2214, 21rereccld 11459 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 / (𝑁𝐴)) ∈ ℝ)
23223adant3 1126 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ ℝ)
242, 23elind 4174 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ))
25 1re 10633 . . . . . . . 8 1 ∈ ℝ
26 0le1 11155 . . . . . . . 8 0 ≤ 1
2725, 26pm3.2i 471 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
2827a1i 11 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 ∈ ℝ ∧ 0 ≤ 1))
29 simprr 769 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 𝐴0 )
3011, 12, 15nmgt0 23154 . . . . . . . 8 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3110, 30syl 17 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3229, 31mpbid 233 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 0 < (𝑁𝐴))
3328, 14, 32jca32 516 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
34333adant3 1126 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
35 divge0 11501 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
3634, 35syl 17 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 0 ≤ (1 / (𝑁𝐴)))
37 simp2l 1193 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐴𝑋)
38 ncvs1.s . . . 4 · = ( ·𝑠𝐺)
39 ncvs1.f . . . 4 𝐹 = (Scalar‘𝐺)
40 ncvs1.k . . . 4 𝐾 = (Base‘𝐹)
4111, 12, 38, 39, 40ncvsge0 23672 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ ((1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
421, 24, 36, 37, 41syl121anc 1369 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
43103adant3 1126 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
4443, 13syl 17 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℝ)
4544recnd 10661 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℂ)
46213adant3 1126 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ≠ 0)
4745, 46recid2d 11404 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
4842, 47eqtrd 2860 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  cin 3938   class class class wbr 5062  cfv 6351  (class class class)co 7151  cr 10528  0cc0 10529  1c1 10530   · cmul 10534   < clt 10667  cle 10668   / cdiv 11289  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  normcnm 23101  NrmGrpcngp 23102  NrmModcnlm 23105  NrmVeccnvc 23106  ℂVecccvs 23642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12383  df-xneg 12500  df-xadd 12501  df-xmul 12502  df-fz 12886  df-seq 13363  df-exp 13423  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-subg 18208  df-cmn 18830  df-mgp 19162  df-ring 19221  df-cring 19222  df-subrg 19455  df-psmet 20453  df-xmet 20454  df-met 20455  df-bl 20456  df-mopn 20457  df-cnfld 20462  df-top 21418  df-topon 21435  df-topsp 21457  df-bases 21470  df-xms 22845  df-ms 22846  df-nm 23107  df-ngp 23108  df-nlm 23111  df-nvc 23112  df-clm 23582  df-cvs 23643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator