MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   GIF version

Theorem ncvs1 25079
Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x 𝑋 = (Base‘𝐺)
ncvs1.n 𝑁 = (norm‘𝐺)
ncvs1.z 0 = (0g𝐺)
ncvs1.s · = ( ·𝑠𝐺)
ncvs1.f 𝐹 = (Scalar‘𝐺)
ncvs1.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvs1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐺 ∈ (NrmVec ∩ ℂVec))
2 simp3 1138 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ 𝐾)
3 elin 3913 . . . . . . . . 9 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
4 nvcnlm 24606 . . . . . . . . . . 11 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
5 nlmngp 24587 . . . . . . . . . . 11 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
76adantr 480 . . . . . . . . 9 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
83, 7sylbi 217 . . . . . . . 8 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
9 simpl 482 . . . . . . . 8 ((𝐴𝑋𝐴0 ) → 𝐴𝑋)
108, 9anim12i 613 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
11 ncvs1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
12 ncvs1.n . . . . . . . 8 𝑁 = (norm‘𝐺)
1311, 12nmcl 24526 . . . . . . 7 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1410, 13syl 17 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ∈ ℝ)
15 ncvs1.z . . . . . . . . . . . 12 0 = (0g𝐺)
1611, 12, 15nmeq0 24528 . . . . . . . . . . 11 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
1716bicomd 223 . . . . . . . . . 10 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
188, 17sylan 580 . . . . . . . . 9 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
1918necon3bid 2972 . . . . . . . 8 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 ↔ (𝑁𝐴) ≠ 0))
2019biimpd 229 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 → (𝑁𝐴) ≠ 0))
2120impr 454 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ≠ 0)
2214, 21rereccld 11943 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 / (𝑁𝐴)) ∈ ℝ)
23223adant3 1132 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ ℝ)
242, 23elind 4145 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ))
25 1re 11107 . . . . . . . 8 1 ∈ ℝ
26 0le1 11635 . . . . . . . 8 0 ≤ 1
2725, 26pm3.2i 470 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
2827a1i 11 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 ∈ ℝ ∧ 0 ≤ 1))
29 simprr 772 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 𝐴0 )
3011, 12, 15nmgt0 24540 . . . . . . . 8 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3110, 30syl 17 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3229, 31mpbid 232 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 0 < (𝑁𝐴))
3328, 14, 32jca32 515 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
34333adant3 1132 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
35 divge0 11986 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
3634, 35syl 17 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 0 ≤ (1 / (𝑁𝐴)))
37 simp2l 1200 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐴𝑋)
38 ncvs1.s . . . 4 · = ( ·𝑠𝐺)
39 ncvs1.f . . . 4 𝐹 = (Scalar‘𝐺)
40 ncvs1.k . . . 4 𝐾 = (Base‘𝐹)
4111, 12, 38, 39, 40ncvsge0 25075 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ ((1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
421, 24, 36, 37, 41syl121anc 1377 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
43103adant3 1132 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
4443, 13syl 17 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℝ)
4544recnd 11135 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℂ)
46213adant3 1132 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ≠ 0)
4745, 46recid2d 11888 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
4842, 47eqtrd 2766 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cin 3896   class class class wbr 5086  cfv 6476  (class class class)co 7341  cr 11000  0cc0 11001  1c1 11002   · cmul 11006   < clt 11141  cle 11142   / cdiv 11769  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  normcnm 24486  NrmGrpcngp 24487  NrmModcnlm 24490  NrmVeccnvc 24491  ℂVecccvs 25045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079  ax-addf 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-0g 17340  df-topgen 17342  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-subg 19031  df-cmn 19689  df-mgp 20054  df-ring 20148  df-cring 20149  df-subrg 20480  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-xms 24230  df-ms 24231  df-nm 24492  df-ngp 24493  df-nlm 24496  df-nvc 24497  df-clm 24985  df-cvs 25046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator