MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ncvs1 Structured version   Visualization version   GIF version

Theorem ncvs1 24521
Description: From any nonzero vector of a normed subcomplex vector space, construct a collinear vector whose norm is one. (Contributed by NM, 6-Dec-2007.) (Revised by AV, 8-Oct-2021.)
Hypotheses
Ref Expression
ncvs1.x 𝑋 = (Base‘𝐺)
ncvs1.n 𝑁 = (norm‘𝐺)
ncvs1.z 0 = (0g𝐺)
ncvs1.s · = ( ·𝑠𝐺)
ncvs1.f 𝐹 = (Scalar‘𝐺)
ncvs1.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
ncvs1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)

Proof of Theorem ncvs1
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐺 ∈ (NrmVec ∩ ℂVec))
2 simp3 1138 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ 𝐾)
3 elin 3926 . . . . . . . . 9 (𝐺 ∈ (NrmVec ∩ ℂVec) ↔ (𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec))
4 nvcnlm 24060 . . . . . . . . . . 11 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmMod)
5 nlmngp 24041 . . . . . . . . . . 11 (𝐺 ∈ NrmMod → 𝐺 ∈ NrmGrp)
64, 5syl 17 . . . . . . . . . 10 (𝐺 ∈ NrmVec → 𝐺 ∈ NrmGrp)
76adantr 481 . . . . . . . . 9 ((𝐺 ∈ NrmVec ∧ 𝐺 ∈ ℂVec) → 𝐺 ∈ NrmGrp)
83, 7sylbi 216 . . . . . . . 8 (𝐺 ∈ (NrmVec ∩ ℂVec) → 𝐺 ∈ NrmGrp)
9 simpl 483 . . . . . . . 8 ((𝐴𝑋𝐴0 ) → 𝐴𝑋)
108, 9anim12i 613 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
11 ncvs1.x . . . . . . . 8 𝑋 = (Base‘𝐺)
12 ncvs1.n . . . . . . . 8 𝑁 = (norm‘𝐺)
1311, 12nmcl 23972 . . . . . . 7 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ ℝ)
1410, 13syl 17 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ∈ ℝ)
15 ncvs1.z . . . . . . . . . . . 12 0 = (0g𝐺)
1611, 12, 15nmeq0 23974 . . . . . . . . . . 11 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → ((𝑁𝐴) = 0 ↔ 𝐴 = 0 ))
1716bicomd 222 . . . . . . . . . 10 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
188, 17sylan 580 . . . . . . . . 9 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴 = 0 ↔ (𝑁𝐴) = 0))
1918necon3bid 2988 . . . . . . . 8 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 ↔ (𝑁𝐴) ≠ 0))
2019biimpd 228 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ 𝐴𝑋) → (𝐴0 → (𝑁𝐴) ≠ 0))
2120impr 455 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝑁𝐴) ≠ 0)
2214, 21rereccld 11982 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 / (𝑁𝐴)) ∈ ℝ)
23223adant3 1132 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ ℝ)
242, 23elind 4154 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ))
25 1re 11155 . . . . . . . 8 1 ∈ ℝ
26 0le1 11678 . . . . . . . 8 0 ≤ 1
2725, 26pm3.2i 471 . . . . . . 7 (1 ∈ ℝ ∧ 0 ≤ 1)
2827a1i 11 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (1 ∈ ℝ ∧ 0 ≤ 1))
29 simprr 771 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 𝐴0 )
3011, 12, 15nmgt0 23986 . . . . . . . 8 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3110, 30syl 17 . . . . . . 7 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → (𝐴0 ↔ 0 < (𝑁𝐴)))
3229, 31mpbid 231 . . . . . 6 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → 0 < (𝑁𝐴))
3328, 14, 32jca32 516 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 )) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
34333adant3 1132 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))))
35 divge0 12024 . . . 4 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ ((𝑁𝐴) ∈ ℝ ∧ 0 < (𝑁𝐴))) → 0 ≤ (1 / (𝑁𝐴)))
3634, 35syl 17 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 0 ≤ (1 / (𝑁𝐴)))
37 simp2l 1199 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → 𝐴𝑋)
38 ncvs1.s . . . 4 · = ( ·𝑠𝐺)
39 ncvs1.f . . . 4 𝐹 = (Scalar‘𝐺)
40 ncvs1.k . . . 4 𝐾 = (Base‘𝐹)
4111, 12, 38, 39, 40ncvsge0 24517 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ ((1 / (𝑁𝐴)) ∈ (𝐾 ∩ ℝ) ∧ 0 ≤ (1 / (𝑁𝐴))) ∧ 𝐴𝑋) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
421, 24, 36, 37, 41syl121anc 1375 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = ((1 / (𝑁𝐴)) · (𝑁𝐴)))
43103adant3 1132 . . . . 5 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝐺 ∈ NrmGrp ∧ 𝐴𝑋))
4443, 13syl 17 . . . 4 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℝ)
4544recnd 11183 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ∈ ℂ)
46213adant3 1132 . . 3 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁𝐴) ≠ 0)
4745, 46recid2d 11927 . 2 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → ((1 / (𝑁𝐴)) · (𝑁𝐴)) = 1)
4842, 47eqtrd 2776 1 ((𝐺 ∈ (NrmVec ∩ ℂVec) ∧ (𝐴𝑋𝐴0 ) ∧ (1 / (𝑁𝐴)) ∈ 𝐾) → (𝑁‘((1 / (𝑁𝐴)) · 𝐴)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cin 3909   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   · cmul 11056   < clt 11189  cle 11190   / cdiv 11812  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  normcnm 23932  NrmGrpcngp 23933  NrmModcnlm 23936  NrmVeccnvc 23937  ℂVecccvs 24486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-0g 17323  df-topgen 17325  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-subg 18925  df-cmn 19564  df-mgp 19897  df-ring 19966  df-cring 19967  df-subrg 20220  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-xms 23673  df-ms 23674  df-nm 23938  df-ngp 23939  df-nlm 23942  df-nvc 23943  df-clm 24426  df-cvs 24487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator